Shoala Tahsin, El-Garhy Hoda A S, Messiha Nevein A S, El-Abeid Sozan E
Environmental Biotechnology Department, College of Biotechnology, Misr University for Science and Technology, Giza, 12563, Egypt.
Genetics and Genetic Engineering Dept, Faculty of Agriculture, Benha University, Qalyubia, Egypt.
BMC Microbiol. 2025 May 19;25(1):305. doi: 10.1186/s12866-025-04022-3.
Fusarium oxysporum f.sp. lycopersici (FOL) wilt endangers Egyptian tomato productivity. Nanotechnology has emerged as an efficient tool for managing plant diseases. This study evaluated salicylic acid nanoparticles (SA-NPs) and glycyrrhizic acid ammonium salt nanoparticles (GAS-NPs) against F. oxysporum in vitro. SA-NPs reduced F. oxysporum growth by 37.8%, and GAS-NPs by 18.9% at 3 ml/L, while SA-NPs at high doses significantly reduced the bacterial count in the tomato rhizosphere. Under greenhouse conditions, high doses of SA-NPs suppressed disease by 73%, compared to 87-93% for other treatments, coinciding with a significant decrease in the overall bacterial count in the tomato rhizosphere. A high dose of SA-NPs reduced heterotrophic, copiotrophic, and fluorescent pseudomonads in the tomato rhizosphere but did not affect the total number of fungi. In vitro, a high dose of both nanoparticles did not significantly reduce bacterial growth in four tested strains: Leclercia adecarboxylata, Pseudomonas putida, Enterobacter ludwigii, and Bacillus marcorestinctum. This suggests that while SA-NP doesn't directly affect bacterial growth, it may interact with tomato roots, indirectly affecting the rhizosphere bacterial population. All treatments increased the expression of ethylene-responsive transcription factor 3 (RAP), xyloglucan endotransglucosylase 2 (XET-2), catalytic hydrolase-2 (ACS-2), phenylalanine ammonia-lyase 5 (PAL5), lipoxygenase D (LOXD), proteinase inhibitor II (PINII), and pathogenesis-related protein 1 (PR1). The highest gene expression levels were obtained from 1 ml/L GAS-NPs and SA-NPs field applications. Furthermore, SA-NPs at 1 ml/L were the most efficient in controlling tomato Fusarium wilt, followed by GAS-NPs. This study investigates the possibility of nanotechnology-based techniques for decreasing Fusarium wilt in tomatoes. However, because of the deleterious impact on the soil bacterial community, high dosages of NPs, particularly SA-NPs, should be applied with caution. Future research should focus on optimizing NPs doses to maintain a balance between efficient disease control and the maintenance of the beneficial complexity of soil microbial biodiversity.
尖孢镰刀菌番茄专化型(FOL)枯萎病危及埃及番茄的产量。纳米技术已成为一种管理植物病害的有效工具。本研究在体外评估了水杨酸纳米颗粒(SA-NPs)和甘草酸铵盐纳米颗粒(GAS-NPs)对尖孢镰刀菌的作用。在3毫升/升时,SA-NPs使尖孢镰刀菌的生长降低了37.8%,GAS-NPs降低了18.9%,而高剂量的SA-NPs显著降低了番茄根际的细菌数量。在温室条件下,高剂量的SA-NPs抑制病害的效果为73%,而其他处理的抑制效果为87%-93%,同时番茄根际的总细菌数量显著减少。高剂量的SA-NPs减少了番茄根际的异养菌、富营养菌和荧光假单胞菌,但不影响真菌总数。在体外,高剂量的两种纳米颗粒对四种受试菌株(脱羧勒克菌、恶臭假单胞菌、路德维希肠杆菌和大骨芽孢杆菌)的细菌生长没有显著影响。这表明,虽然SA-NP不会直接影响细菌生长,但它可能与番茄根系相互作用,间接影响根际细菌群落。所有处理均增加了乙烯响应转录因子3(RAP)、木葡聚糖内转糖基酶2(XET-2)、催化水解酶-2(ACS-2)、苯丙氨酸解氨酶5(PAL5)、脂氧合酶D(LOXD)、蛋白酶抑制剂II(PINII)和病程相关蛋白1(PR1)的表达。从1毫升/升GAS-NPs和SA-NPs的田间应用中获得了最高的基因表达水平。此外,1毫升/升的SA-NPs在控制番茄枯萎病方面最有效,其次是GAS-NPs。本研究探讨了基于纳米技术的方法减少番茄枯萎病的可能性。然而,由于对土壤细菌群落有有害影响,应谨慎使用高剂量的纳米颗粒,特别是SA-NPs。未来的研究应侧重于优化纳米颗粒的剂量,以在有效控制病害和维持土壤微生物生物多样性的有益复杂性之间保持平衡。