Suppr超能文献

具有生物医学潜力的新型纳米材料-生物体杂合体。

Novel nanomaterial-organism hybrids with biomedical potential.

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.

Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1706. doi: 10.1002/wnan.1706. Epub 2021 Feb 28.

Abstract

Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.

摘要

各种生物体的本能分层生物矿化结构,如卵、藻类和趋磁细菌,提供了额外的保护和独特的性能,使脆弱的生物体具有顽强的适应和生存能力。然而,自然界中大多数生物体自发形成杂化材料的能力很困难。化学和材料科学的快速发展成功地通过仿生矿化获得了生物体与纳米材料的组合,从而展示了生物体不具备的结构和功能的复制以及新功能的产生。生物材料-生物体杂交的合理设计可以控制生物体的生物识别、相互作用和代谢。因此,纳米材料-生物体杂化代表了下一代具有巨大潜在生物医学应用的生物体工程。本文总结了材料导向的生物体工程的最新进展,主要集中在仿生矿化技术及其卓越的生物医学应用。系统介绍了三种代表性的仿生矿化类型,包括外矿化、内矿化和遗传工程矿化。描述了基于仿生矿化策略的纳米材料和生物体杂交的方法。这些策略导致了具有多种功能的各种纳米材料-生物体杂化的应用,在细胞工程、癌症治疗和疫苗改进方面。与经典生物学方法不同,这种基于材料的生物调控是普遍的、有效的和廉价的。特别是,纳米材料和生物体的整合可能会利用新策略来解决当前的生物医学问题,而不是传统的医疗解决方案。本文属于以下分类:可植入材料和手术技术 > 纳米材料和植入物治疗方法和药物发现 > 用于肿瘤疾病的纳米医学治疗方法和药物发现 > 用于传染病的纳米医学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验