Suppr超能文献

通过仿生矿化来改良生物体:一种用于生物修饰的材料掺入策略。

Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification.

机构信息

Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China.

Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.

出版信息

Acta Biomater. 2021 Jan 15;120:57-80. doi: 10.1016/j.actbio.2020.06.038. Epub 2020 Jul 3.

Abstract

Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.

摘要

生物矿化是一种生物控制的矿物形成过程,在连接生物有机体和自然界中的矿物材料方面发挥着重要作用。受生物矿化启发,仿生矿化被用作整合生物有机体和功能材料的桥梁工具,这有利于发展多样化的功能有机-材料杂合体。在这篇综述中,总结和讨论了用于有机-材料组合的仿生矿化技术的最新进展。基于这些技术,展示了病毒、原核生物和真核生物-材料杂合体的制备和应用,它们在疫苗改进、细胞保护、能源生产、环境和生物医学治疗等领域展示了巨大的潜力。我们建议,应该开发更多具有更好生物相容性的技术来研究具有更多功能的有机材料组合,以改进特定有机-材料杂合体的设计和应用。这些经过合理设计的有机-材料杂合体将为未来具有更先进功能的“活体材料”的生产带来启示。

意义陈述

本综述总结了最近通过仿生矿化作为组合工具,通过将功能材料与生物有机体结合来改善生物有机体的尝试。这些整合的材料作为人工外壳或细胞器,赋予封闭的生物有机体多样化的功能。各种病毒、原核生物和真核生物-材料杂合体的成功构建证明了材料掺入策略在疫苗开发、癌症治疗、生物光合作用和环境保护等方面的巨大潜力。所提出的挑战和观点为未来有机-材料杂合体的发展提供了更多的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验