Physik Department, Technische Universität München, 85748 Garching bei München, Germany; email:
Annu Rev Biophys. 2021 May 6;50:469-492. doi: 10.1146/annurev-biophys-110520-125739. Epub 2021 Mar 1.
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
DNA 折纸术能够实现化学寻址的、具有用户定义形状和定制功能的纳米级物体的自下而上构建。因此,DNA 折纸术不仅可以用于改进生物物理学中现有的实验方法,而且还开辟了全新的探索途径。在这篇综述中,我们讨论了与未来的 DNA 折纸术使用者相关的基本生物物理概念。我们总结了将 DNA 折纸术与感兴趣的生物分子相连接的生化策略。我们描述了 DNA 折纸术的各种应用,强调了可以产生的附加值或新的生物物理见解:尺子和定位装置、力测量和力施加装置、低温电子显微镜和核磁共振中生物分子结构分析的对准支架、用于操纵和相互作用的脂质膜的探针,以及可编程纳米孔。最后,我们对在更复杂的环境(如细胞甚至生物体)中使用 DNA 折纸术的一些迄今为止探索较少的机会进行了思考。