Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
Nano Lett. 2024 Oct 2;24(39):12080-12087. doi: 10.1021/acs.nanolett.4c02695. Epub 2024 Sep 24.
DNA origami nanotechnology has great potential in multiple fields including biomedical, biophysical, and nanofabrication applications. However, current production pipelines lead to single-use devices incorporating a small fraction of initial reactants, resulting in a wasteful manufacturing process. Here, we introduce two complementary approaches to overcome these limitations by recycling the strand components of DNA origami nanostructures (DONs). We demonstrate reprogramming entire DONs into new devices, reusing scaffold strands. We validate this approach by reprogramming DONs with complex geometries into each other, using their distinct geometries to verify successful scaffold recycling. We reprogram one DON into a dynamic structure and show both pristine and recycled structures display similar properties. Second, we demonstrate the recovery of excess staple strands postassembly and fold DONs with these recycled strands, showing these structures exhibit the expected geometry and dynamic properties. Finally, we demonstrate the combination of both approaches, successfully fabricating DONs solely from recycled DNA components.
DNA 折纸纳米技术在生物医学、生物物理和纳米制造等多个领域具有巨大的潜力。然而,目前的生产管道导致了一次性使用的设备,其中包含初始反应物的一小部分,从而造成了浪费的制造过程。在这里,我们介绍了两种互补的方法来克服这些限制,通过回收 DNA 折纸纳米结构(DONs)的链组件来实现。我们证明了可以通过重新编程支架链来重新编程整个 DON 到新的设备中。我们通过使用它们独特的几何形状来验证支架的成功回收,将具有复杂几何形状的 DON 重新编程为彼此,从而验证了这种方法。我们将一个 DON 重新编程为动态结构,并显示原始和回收的结构都具有相似的特性。其次,我们证明了在组装后可以回收多余的订书钉链,并使用这些回收的链折叠 DONs,表明这些结构表现出预期的几何形状和动态特性。最后,我们展示了这两种方法的结合,成功地仅使用回收的 DNA 组件制造 DONs。