University of Regensburg, Department of Microbiology and Archaea Centre, Regensburg, Germany.
Ludwig-Maximilians-Universität München, Department of Chemistry and Center for NanoScience (CeNS), Munich, Germany.
Methods Mol Biol. 2024;2694:479-507. doi: 10.1007/978-1-0716-3377-9_23.
Over the last years, single-molecule force spectroscopy provided insights into the intricate connection between mechanical stimuli and biochemical signaling. The underlying molecular mechanisms were uncovered and explored using techniques such as atomic force microscopy and force spectroscopy using optical or magnetic tweezers. These experimental approaches are limited by thermal noise resulting from a physical connection of the studied biological system to the macroscopic world. To overcome this limitation, we recently introduced the DNA origami force clamp (FC) which is a freely diffusing nanodevice that generates piconewton forces on a DNA sequence of interest. Binding of a protein to the DNA under tension can be detected employing fluorescence resonance energy transfer (FRET) as a sensitive readout.This protocol introduces the reader to the working principles of the FC and provides instructions to design and generate a DNA origami FC customized for a protein of interest. Molecular cloning techniques are employed to modify, produce, and purify a custom DNA scaffold. A fluorescently labeled DNA suitable to detect protein binding via FRET is generated via enzymatic ligation of commercial DNA oligonucleotides. After thermal annealing of all components, the DNA origami FC is purified using agarose gel electrophoresis. The final section covers the interrogation of the FC using confocal single-molecule FRET measurements and subsequent data analysis to quantify the binding of a DNA-binding protein to its cognate recognition site under a range of forces. Using this approach, force-dependent DNA-protein interactions can be studied on the single-molecule level on thousands of molecules in a parallelized fashion.
在过去的几年中,单分子力谱学为我们深入了解机械刺激与生化信号之间错综复杂的关系提供了新的视角。原子力显微镜和使用光学或磁镊的力谱学等技术被用来揭示和探索潜在的分子机制。这些实验方法受到研究生物系统与宏观世界之间物理连接产生的热噪声的限制。为了克服这一限制,我们最近引入了 DNA 折纸力钳(FC),这是一种自由扩散的纳米器件,可以在感兴趣的 DNA 序列上产生皮牛顿力。通过荧光共振能量转移(FRET)作为一种灵敏的读出方法,可以检测到蛋白质在张力下与 DNA 的结合。本方案向读者介绍了 FC 的工作原理,并提供了设计和生成针对感兴趣蛋白质的 DNA 折纸 FC 的说明。分子克隆技术用于修饰、生产和纯化定制的 DNA 支架。通过商业 DNA 寡核苷酸的酶连接生成适合通过 FRET 检测蛋白质结合的荧光标记 DNA。所有成分热退火后,使用琼脂糖凝胶电泳纯化 DNA 折纸 FC。最后一部分介绍了使用共焦单分子 FRET 测量对 FC 的检测,并进行后续数据分析,以量化在一系列力下 DNA 结合蛋白与其同源识别位点的结合情况。使用这种方法,可以在单分子水平上并行研究数千个分子上数千个分子中力依赖性的 DNA-蛋白质相互作用。