Suppr超能文献

使用生成对抗网络框架恢复使用短时间数据获得的淀粉样 PET 图像。

Restoration of amyloid PET images obtained with short-time data using a generative adversarial networks framework.

机构信息

Department of Nuclear Medicine, Dong-A University Hospital, Dong-A University College of Medicine, 1, 3ga, Dongdaesin-dong, Seo-gu, Busan, 602-715, South Korea.

Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.

出版信息

Sci Rep. 2021 Mar 1;11(1):4825. doi: 10.1038/s41598-021-84358-8.

Abstract

Our purpose in this study is to evaluate the clinical feasibility of deep-learning techniques for F-18 florbetaben (FBB) positron emission tomography (PET) image reconstruction using data acquired in a short time. We reconstructed raw FBB PET data of 294 patients acquired for 20 and 2 min into standard-time scanning PET (PET) and short-time scanning PET (PET) images. We generated a standard-time scanning PET-like image (sPET) from a PET image using a deep-learning network. We did qualitative and quantitative analyses to assess whether the sPET images were available for clinical applications. In our internal validation, sPET images showed substantial improvement on all quality metrics compared with the PET images. There was a small mean difference between the standardized uptake value ratios of sPET and PET images. A Turing test showed that the physician could not distinguish well between generated PET images and real PET images. Three nuclear medicine physicians could interpret the generated PET image and showed high accuracy and agreement. We obtained similar quantitative results by means of temporal and external validations. We can generate interpretable PET images from low-quality PET images because of the short scanning time using deep-learning techniques. Although more clinical validation is needed, we confirmed the possibility that short-scanning protocols with a deep-learning technique can be used for clinical applications.

摘要

我们这项研究的目的是评估使用短时间采集的数据进行 F-18 氟比他滨(FBB)正电子发射断层扫描(PET)图像重建的深度学习技术的临床可行性。我们将 294 名患者的 20 分钟和 2 分钟的原始 FBB PET 数据重建为标准时间扫描 PET(PET)和短时间扫描 PET(PET)图像。我们使用深度学习网络从 PET 图像生成标准时间扫描 PET 样图像(sPET)。我们进行了定性和定量分析,以评估 sPET 图像是否可用于临床应用。在我们的内部验证中,sPET 图像在所有质量指标上均明显优于 PET 图像。sPET 和 PET 图像的标准化摄取值比值之间存在较小的平均差异。图灵测试表明,医生无法很好地区分生成的 PET 图像和真实的 PET 图像。三位核医学医师可以解释生成的 PET 图像,并表现出很高的准确性和一致性。我们通过时间和外部验证获得了类似的定量结果。我们可以使用深度学习技术从低质量的 PET 图像生成可解释的 PET 图像,因为扫描时间短。尽管需要更多的临床验证,但我们证实了使用深度学习技术的短扫描方案可用于临床应用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b257/7921674/72ff18ee47e9/41598_2021_84358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验