Tselikov Gleb I, Minnekhanov Anton A, Ermolaev Georgy A, Tikhonowski Gleb V, Kazantsev Ivan S, Dyubo Dmitry V, Panova Daria A, Tselikov Daniil I, Popov Anton A, Mazitov Arslan B, Smirnov Sergei, Lipilin Fedor, Ahsan Umer, Orekhov Nikita D, Kruglov Ivan, Syuy Alexander V, Kabashin Andrei V, Chichkov Boris N, Sofer Zdenek, Arsenin Aleksey V, Novoselov Kostya S, Volkov Valentyn S
Emerging Technologies Research Center, XPANCEO, Dubai Investment Park First, Dubai, United Arab Emirates.
Physics Department, King's College London, London WC2R 2LS, U.K.
ACS Nano. 2025 Jul 1;19(25):22820-22836. doi: 10.1021/acsnano.5c00546. Epub 2025 Jun 16.
van der Waals (vdW) materials are becoming increasingly popular in scientific and industrial applications because of their unique mixture of record electronic, optical, and mechanical properties. However, nanostructuring of vdW materials is still in its infancy and strongly depends on the specific vdW crystal. As a result, the universal self-assembled technology of vdW materials nanostructuring opens vast technological prospects. This work demonstrates an express and universal synthesis method of vdW nanoparticles with well-defined geometry using femtosecond laser ablation and fragmentation. The disarming simplicity of the technique allows us to create nanoparticles from over 50 vdW precursor materials, covering transition metal chalcogenides, MXenes, and other vdW materials. Obtained nanoparticles manifest perfectly defined crystalline structures and diverse shapes, from nanospheres to nanocubes and nanotetrahedrons. Thus, our approach illustrates a generalizable route to vdW nanostructuring with broad tunability in size, shape, and material composition, adaptable to specific application requirements.
范德华(vdW)材料因其独特的电子、光学和机械性能组合,在科学和工业应用中越来越受欢迎。然而,范德华材料的纳米结构化仍处于起步阶段,并且强烈依赖于特定的范德华晶体。因此,范德华材料纳米结构化的通用自组装技术开启了广阔的技术前景。这项工作展示了一种使用飞秒激光烧蚀和破碎来快速、通用地合成具有明确几何形状的范德华纳米颗粒的方法。该技术的简单易行使我们能够从50多种范德华前驱体材料中制备纳米颗粒,包括过渡金属硫族化合物、MXenes和其他范德华材料。所获得的纳米颗粒呈现出完美定义的晶体结构和多样的形状,从纳米球到纳米立方体和纳米四面体。因此,我们的方法展示了一条可推广的范德华纳米结构化途径,在尺寸、形状和材料组成方面具有广泛的可调性,可适应特定的应用需求。