Suppr超能文献

利用可微统计物理模型设计自组装动力学。

Designing self-assembling kinetics with differentiable statistical physics models.

作者信息

Goodrich Carl P, King Ella M, Schoenholz Samuel S, Cubuk Ekin D, Brenner Michael P

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;

Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2024083118.

Abstract

The inverse problem of designing component interactions to target emergent structure is fundamental to numerous applications in biotechnology, materials science, and statistical physics. Equally important is the inverse problem of designing emergent kinetics, but this has received considerably less attention. Using recent advances in automatic differentiation, we show how kinetic pathways can be precisely designed by directly differentiating through statistical physics models, namely free energy calculations and molecular dynamics simulations. We consider two systems that are crucial to our understanding of structural self-assembly: bulk crystallization and small nanoclusters. In each case, we are able to assemble precise dynamical features. Using gradient information, we manipulate interactions among constituent particles to tune the rate at which these systems yield specific structures of interest. Moreover, we use this approach to learn nontrivial features about the high-dimensional design space, allowing us to accurately predict when multiple kinetic features can be simultaneously and independently controlled. These results provide a concrete and generalizable foundation for studying nonstructural self-assembly, including kinetic properties as well as other complex emergent properties, in a vast array of systems.

摘要

设计组件相互作用以靶向涌现结构的逆问题,对于生物技术、材料科学和统计物理学中的众多应用至关重要。设计涌现动力学的逆问题同样重要,但受到的关注要少得多。利用自动微分的最新进展,我们展示了如何通过直接对统计物理模型(即自由能计算和分子动力学模拟)进行微分来精确设计动力学途径。我们考虑了两个对于我们理解结构自组装至关重要的系统:体相结晶和小纳米团簇。在每种情况下,我们都能够组装精确的动力学特征。利用梯度信息,我们操纵组成粒子之间的相互作用,以调整这些系统产生感兴趣的特定结构的速率。此外,我们使用这种方法来了解关于高维设计空间的非平凡特征,使我们能够准确预测何时可以同时且独立地控制多个动力学特征。这些结果为研究大量系统中的非结构自组装(包括动力学性质以及其他复杂的涌现性质)提供了一个具体且可推广的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb8d/7958177/9c56b2815f6f/pnas.2024083118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验