Suppr超能文献

虚拟结构检测实现了对人视网膜中视杆和视锥光感受器的超分辨率检眼镜检查。

Virtually structured detection enables super-resolution ophthalmoscopy of rod and cone photoreceptors in human retina.

作者信息

Lu Yiming, Son Taeyoon, Kim Tae-Hoon, Le David, Yao Xincheng

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.

Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Quant Imaging Med Surg. 2021 Mar;11(3):1060-1069. doi: 10.21037/qims-20-542.

Abstract

BACKGROUND

High resolution imaging is desirable for advanced study and clinical management of retinal diseases. However, spatial resolution of retinal imaging has been limited due to available numerical aperture and optical aberration of the ocular optics. This study is to develop and validate virtually structured detection (VSD) to surpass diffraction limit for resolution improvement in retinal imaging of awake human.

METHODS

A rapid line scanning laser ophthalmoscope (SLO) was constructed for retinal imaging. A high speed (25,000 kHz) camera was used for recording the two-dimensional (2D) light reflectance profile, corresponding to each focused line illumination. VSD was implemented to the 2D light reflectance profiles for super-resolution reconstruction. Because each 2D light reflectance profile was recorded within 40 μs, the intra-frame blur due to eye movements can be ignored. Digital registration was implemented to further compensate for inter-frame eye movements, before the VSD processing. Based on digital processing, the modulation transfer function (MTF) of the imaging system was derived for objective identification of the cut-off frequency of ocular optics, which is essential for robust VSD processing to ensure reliable super-resolution imaging. Dynamic motility analysis of the super-resolution images was implemented to further enhance the imaging contrast of retinal rod and cone photoreceptors.

RESULTS

The VSD based super-resolution SLO significantly improved image quality compared with equivalent wide-field imaging. observation of individual retinal photoreceptors has been demonstrated unambiguously. Dynamic motility analysis of the super-resolution images enhanced the contrast of retinal rod and cone photoreceptors, and revealed sub-cellular structures in cone photoreceptors.

CONCLUSIONS

In conjunction with rapid line-scan imaging and digital registration to minimize the effect of eye movements, VSD enabled resolution improvement to observe individual retinal photoreceptors without the involvement of adaptive optics (AO). An objective method has been developed to identify MTF to enable quantitative estimation of the cut-off frequency required for robust VSD processing.

摘要

背景

高分辨率成像对于视网膜疾病的深入研究和临床管理至关重要。然而,由于眼屈光系统的可用数值孔径和光学像差,视网膜成像的空间分辨率一直受到限制。本研究旨在开发并验证虚拟结构检测(VSD)技术,以突破衍射极限,提高清醒人类视网膜成像的分辨率。

方法

构建了一台用于视网膜成像的快速线扫描激光眼科显微镜(SLO)。使用高速(25,000 kHz)相机记录与每条聚焦线照明相对应的二维(2D)光反射轮廓。将VSD应用于2D光反射轮廓进行超分辨率重建。由于每个2D光反射轮廓在40微秒内记录,因此可忽略因眼球运动引起的帧内模糊。在VSD处理之前,进行数字配准以进一步补偿帧间眼球运动。基于数字处理,推导了成像系统的调制传递函数(MTF),以客观识别眼屈光系统的截止频率,这对于稳健的VSD处理以确保可靠的超分辨率成像至关重要。对超分辨率图像进行动态运动分析,以进一步增强视网膜视杆和视锥光感受器的成像对比度。

结果

与等效的宽视野成像相比,基于VSD的超分辨率SLO显著提高了图像质量。已明确证明能够观察到单个视网膜光感受器。超分辨率图像的动态运动分析增强了视网膜视杆和视锥光感受器的对比度,并揭示了视锥光感受器中的亚细胞结构。

结论

结合快速线扫描成像和数字配准以最小化眼球运动的影响,VSD能够在不涉及自适应光学(AO)的情况下提高分辨率,从而观察单个视网膜光感受器。已开发出一种客观方法来识别MTF,以便对稳健的VSD处理所需的截止频率进行定量估计。

相似文献

2
Super-resolution ophthalmoscopy: Virtually structured detection for resolution improvement in retinal imaging.
Exp Biol Med (Maywood). 2021 Feb;246(3):249-259. doi: 10.1177/1535370220970533. Epub 2020 Nov 27.
3
In vivo super-resolution retinal imaging through virtually structured detection.
J Biomed Opt. 2016 Dec 1;21(12):120502. doi: 10.1117/1.JBO.21.12.120502.
4
High-speed adaptive optics line scan confocal retinal imaging for human eye.
PLoS One. 2017 Mar 3;12(3):e0169358. doi: 10.1371/journal.pone.0169358. eCollection 2017.
5
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection.
Crit Rev Biomed Eng. 2015;43(4):297-322. doi: 10.1615/CritRevBiomedEng.2016016445.
6
Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.
8
High-resolution retinal imaging of cone-rod dystrophy.
Ophthalmology. 2006 Jun;113(6):1019.e1. doi: 10.1016/j.ophtha.2006.01.056. Epub 2006 May 2.

引用本文的文献

1
structured illumination ophthalmoscopy demonstration on the human retina using adaptive optics.
Biomed Opt Express. 2025 Jun 24;16(7):2923-2944. doi: 10.1364/BOE.559670. eCollection 2025 Jul 1.
2
Extracting spacing-derived estimates of rod density in healthy retinae.
Biomed Opt Express. 2022 Dec 5;14(1):1-17. doi: 10.1364/BOE.473101. eCollection 2023 Jan 1.
3
Emerging imaging developments in experimental vision sciences and ophthalmology.
Exp Biol Med (Maywood). 2021 Oct;246(20):2137-2139. doi: 10.1177/15353702211038891. Epub 2021 Aug 18.
4
Super-resolution ophthalmoscopy: Virtually structured detection for resolution improvement in retinal imaging.
Exp Biol Med (Maywood). 2021 Feb;246(3):249-259. doi: 10.1177/1535370220970533. Epub 2020 Nov 27.

本文引用的文献

2
Non-invasive assessment of human cone photoreceptor function.
Biomed Opt Express. 2017 Oct 19;8(11):5098-5112. doi: 10.1364/BOE.8.005098. eCollection 2017 Nov 1.
3
Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12803-12808. doi: 10.1073/pnas.1711734114. Epub 2017 Nov 14.
4
De-warping of images and improved eye tracking for the scanning laser ophthalmoscope.
PLoS One. 2017 Apr 3;12(4):e0174617. doi: 10.1371/journal.pone.0174617. eCollection 2017.
5
High-speed adaptive optics line scan confocal retinal imaging for human eye.
PLoS One. 2017 Mar 3;12(3):e0169358. doi: 10.1371/journal.pone.0169358. eCollection 2017.
6
In vivo super-resolution retinal imaging through virtually structured detection.
J Biomed Opt. 2016 Dec 1;21(12):120502. doi: 10.1117/1.JBO.21.12.120502.
7
Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection.
Crit Rev Biomed Eng. 2015;43(4):297-322. doi: 10.1615/CritRevBiomedEng.2016016445.
8
Rapid super-resolution line-scanning microscopy through virtually structured detection.
Opt Lett. 2015 Apr 15;40(8):1683-6. doi: 10.1364/OL.40.001683.
9
Introduction to super-resolution microscopy.
Microscopy (Oxf). 2014 Jun;63(3):177-92. doi: 10.1093/jmicro/dfu007. Epub 2014 Mar 25.
10
Super-resolution scanning laser microscopy through virtually structured detection.
Biomed Opt Express. 2013 Aug 19;4(9):1673-82. doi: 10.1364/BOE.4.001673. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验