Suppr超能文献

使用Percoll通过微分干涉对比显微镜对spp. 胶囊进行成像。

Imaging spp. Capsule by Differential Interference Contrast Microscopy Using Percoll.

作者信息

Paes Hugo Costa, de Oliveira Frazão Stefânia, Felipe Maria Sueli Soares, Casadevall Arturo, Nicola André Moraes

机构信息

Faculty of Medicine, University of Brasília, Brasília, Brazil.

Department of Cell Biology, University of Brasília, Brasília, Brazil.

出版信息

Bio Protoc. 2019 Nov 20;9(22):e3423. doi: 10.21769/BioProtoc.3423.

Abstract

The most important virulence factor in the genus is the polysaccharide capsule. This genus includes several species that cause life-threatening invasive disease. An increase in capsule thickness is important during fungal infection. The capsule is usually imaged using India ink, and crucial insights on the dynamics of its growth have been obtained using capsule-binding proteins such as specific antibodies or complement. We have developed an alternative method that allows both static and time-lapse imaging of the capsule using Percoll, a suspension of nanometric spheres that do not penetrate the capsule. Given that these particles have a higher refractive index than the capsule, the latter can be imaged by differential interference contrast (DIC) microscopy. Static observation of the capsule with DIC and Percoll results in capsule thickness measurements that match those made with India ink. Using capsule-inducing media, a glass-bottom incubation chamber and a live-imaging system equipped for DIC microscopy, this method allows time-lapse imaging of capsule growth. In contrast with India ink staining, DIC imaging of Percoll exclusion halos result in crisp images. The greatest advantage of this method, though, is that unlike India ink, the Percoll particles are non-toxic and unlike opsonins they do not bind the capsule, resulting in observations of capsule growth that are free from interference of bound proteins on capsule physiology.

摘要

该属中最重要的毒力因子是多糖荚膜。该属包括几种可引起危及生命的侵袭性疾病的物种。在真菌感染期间,荚膜厚度增加很重要。荚膜通常用印度墨汁成像,并且使用诸如特异性抗体或补体等荚膜结合蛋白获得了关于其生长动态的关键见解。我们开发了一种替代方法,该方法允许使用不穿透荚膜的纳米级球体悬浮液Percoll对荚膜进行静态和延时成像。鉴于这些颗粒的折射率高于荚膜,后者可以通过微分干涉对比(DIC)显微镜成像。用DIC和Percoll对荚膜进行静态观察可得到与用印度墨汁测量的荚膜厚度相匹配的结果。使用诱导荚膜形成的培养基、玻璃底培养室和配备DIC显微镜的实时成像系统,该方法允许对荚膜生长进行延时成像。与印度墨汁染色相比,Percoll排斥晕的DIC成像可得到清晰的图像。不过,该方法最大的优点是,与印度墨汁不同,Percoll颗粒无毒,并且与调理素不同,它们不结合荚膜,从而可以在不受结合蛋白对荚膜生理学干扰的情况下观察荚膜生长。

相似文献

1
Imaging spp. Capsule by Differential Interference Contrast Microscopy Using Percoll.
Bio Protoc. 2019 Nov 20;9(22):e3423. doi: 10.21769/BioProtoc.3423.
2
Temporal behavior of capsule enlargement by Cryptococcus neoformans.
Eukaryot Cell. 2013 Oct;12(10):1383-8. doi: 10.1128/EC.00163-13. Epub 2013 Aug 16.
4
The volume and hydration of the Cryptococcus neoformans polysaccharide capsule.
Fungal Genet Biol. 2007 Mar;44(3):180-6. doi: 10.1016/j.fgb.2006.07.010. Epub 2006 Sep 11.
5
Size Matters: Measurement of Capsule Diameter in Cryptococcus neoformans.
J Vis Exp. 2018 Feb 27(132):57171. doi: 10.3791/57171.
8
Biological correlates of capsular (quellung) reactions of Cryptococcus neoformans.
J Immunol. 2000 May 1;164(9):4835-42. doi: 10.4049/jimmunol.164.9.4835.
9
Equatorial ring-like channels in the Cryptococcus neoformans polysaccharide capsule.
FEMS Yeast Res. 2006 Jun;6(4):662-6. doi: 10.1111/j.1567-1364.2006.00070.x.
10
Antibody interactions with the capsule of Cryptococcus neoformans.
Infect Immun. 2000 Jun;68(6):3642-50. doi: 10.1128/IAI.68.6.3642-3650.2000.

引用本文的文献

1
Pathogenicity and virulence of Cryptococcus neoformans from an environmental perspective.
Virulence. 2025 Dec;16(1):2547090. doi: 10.1080/21505594.2025.2547090. Epub 2025 Aug 14.

本文引用的文献

1
Opsonin-free, real-time imaging of Cryptococcus neoformans capsule during budding.
Virulence. 2018;9(1):1483-1488. doi: 10.1080/21505594.2018.1515610.
2
Peeling the onion: the outer layers of Cryptococcus neoformans.
Mem Inst Oswaldo Cruz. 2018;113(7):e180040. doi: 10.1590/0074-02760180040. Epub 2018 May 7.
3
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis.
Lancet Infect Dis. 2017 Aug;17(8):873-881. doi: 10.1016/S1473-3099(17)30243-8. Epub 2017 May 5.
4
The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.
PLoS Genet. 2015 Apr 10;11(4):e1005159. doi: 10.1371/journal.pgen.1005159. eCollection 2015 Apr.
5
Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression.
mBio. 2014 Jun 17;5(3):e00945-14. doi: 10.1128/mBio.00945-14.
6
Temporal behavior of capsule enlargement by Cryptococcus neoformans.
Eukaryot Cell. 2013 Oct;12(10):1383-8. doi: 10.1128/EC.00163-13. Epub 2013 Aug 16.
7
Antibody binding to Cryptococcus neoformans impairs budding by altering capsular mechanical properties.
J Immunol. 2013 Jan 1;190(1):317-23. doi: 10.4049/jimmunol.1202324. Epub 2012 Dec 10.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
9
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
10
Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism.
J Clin Invest. 2010 Apr;120(4):1355-61. doi: 10.1172/JCI38322. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验