基于脑电图利用神经网络检测重度抑郁症和双相情感障碍:综述

EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks:A review.

作者信息

Yasin Sana, Hussain Syed Asad, Aslan Sinem, Raza Imran, Muzammel Muhammad, Othmani Alice

机构信息

Department of Computer Science, COMSATS University Islamabad, Lahore Campus Lahore,Pakistan; Department of Computer Science, University of Okara, Okara Pakistan.

Department of Computer Science, COMSATS University Islamabad, Lahore Campus Lahore,Pakistan.

出版信息

Comput Methods Programs Biomed. 2021 Apr;202:106007. doi: 10.1016/j.cmpb.2021.106007. Epub 2021 Feb 23.

Abstract

Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.

摘要

精神障碍是重大的公共卫生挑战,因为它们是全球疾病负担的主要促成因素,并对个人的社会和经济福利产生重大影响。本综述聚焦于过去十年中有重要出版物的两种精神障碍:重度抑郁症(MDD)和双相情感障碍(BD)。如今,迫切需要利用生物标志物对精神障碍进行表型特征描述。脑电图(EEG)信号可为MDD和BD提供丰富的特征,进而有助于加深对这些精神障碍潜在病理生理机制的理解。在本综述中,我们重点关注采用EEG信号驱动的神经网络的文献作品。在那些使用EEG和神经网络的研究中,我们讨论了多种基于EEG的方案、生物标志物以及用于抑郁症和双相情感障碍检测的公共数据集。我们通过讨论和提出有价值的建议来结束本文,这些建议将有助于提高所开发模型的可靠性,并有助于在精神病学中构建更准确、更具确定性的基于计算智能的系统。对于致力于通过EEG信号识别抑郁症和双相情感障碍的研究人员而言,本综述将被证明是一个结构化且有价值的起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索