深度学习方法使用 EEG 数据高精度地区分双相情感障碍患者和对照组。
The Deep Learning Method Differentiates Patients with Bipolar Disorder from Controls with High Accuracy Using EEG Data.
机构信息
Medical Faculty, Neurology Department, Uskudar University, Istanbul, Turkey.
Department of Mechanical Engineering, Katip Çelebi University, İzmir, Turkey.
出版信息
Clin EEG Neurosci. 2024 Mar;55(2):167-175. doi: 10.1177/15500594221137234. Epub 2022 Nov 6.
Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD.
双相情感障碍(BD)是一种以抑郁和躁狂或轻躁狂发作为特征的精神障碍。由于其与其他心境障碍的症状重叠,BD 的诊断较为复杂,这促使研究人员和临床医生寻求新的先进技术来精确检测双相情感障碍(BD)。其中一种方法是使用深度学习(DL)等先进的机器学习算法。然而,以前没有研究使用 EEG 信号采用 DL 技术来诊断 BD。本研究从 169 名 BD 患者和 45 名对照中采集 EEG 信号,从伪迹中清理出来,并使用两种不同的 DL 方法进行处理:一维卷积神经网络(1D-CNN)结合长短时记忆(LSTM)和二维卷积神经网络(2D-CNN)。此外,从双相组和对照组获得的类别激活图(CAM)用于获取独特的区域,以在图像中指定特定的类别。通过 2D-CNN 方法,通过 95.91%的总体准确率确认了组别的识别,表明具有非常高的敏感性和较低的特异性。此外,通过 1D-CNN + LSTM 方法获得的总体准确率为 93%。我们还发现 F4、C3、F7 和 F8 电极活动产生主要特征来检测双相组。据我们所知,本研究首次在 BD 中使用基于 EEG 的 DL 分析。我们的研究结果表明,基于原始 EEG 的 DL 算法可以成功地区分 BD 患者和对照组。类别激活图(CAM)分析表明,前额叶变化在 BD 患者的 EEG 数据中占主导地位。