Suppr超能文献

基于多个卷积神经网络的癫痫与阿尔茨海默病研究中的海马体分割

Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks.

作者信息

Carmo Diedre, Silva Bruna, Yasuda Clarissa, Rittner Letícia, Lotufo Roberto

机构信息

School of Electrical and Computer Engineering, UNICAMP, Campinas, São Paulo, Brazil.

Faculty of Medical Sciences, UNICAMP, Campinas, São Paulo, Brazil.

出版信息

Heliyon. 2021 Feb 10;7(2):e06226. doi: 10.1016/j.heliyon.2021.e06226. eCollection 2021 Feb.

Abstract

Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation methods train their methods on healthy or Alzheimer's disease patients from public datasets. This raises the question whether these methods are capable of recognizing the hippocampus on a different domain, that of epilepsy patients with hippocampus resection. In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic pre-processing and orientation alignment. The methodology was developed and validated using HarP, a public Alzheimer's disease hippocampus segmentation dataset. We test this methodology alongside other recent deep learning methods, in two domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer's data and vice versa. Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that there is still room for improvement for hippocampus segmentation methods when resection is involved.

摘要

磁共振成像中的海马体分割对于神经精神疾病的诊断、治疗决策和研究至关重要。自动分割是一个活跃的研究领域,最近有许多模型使用深度学习。当前大多数最先进的海马体分割方法都是在来自公共数据集的健康或阿尔茨海默病患者身上训练其方法。这就提出了一个问题,即这些方法是否能够在不同领域识别海马体,即有海马体切除术的癫痫患者的领域。在本文中,我们提出了一种基于深度学习的最先进、开源、即用型海马体分割方法。它使用扩展的二维多方向方法,并进行自动预处理和方向对齐。该方法是使用公共阿尔茨海默病海马体分割数据集HarP开发和验证的。我们在两个领域将该方法与其他最近的深度学习方法一起进行测试:HarP测试集和一个包含海马体切除术的内部癫痫数据集,名为HCUnicamp。我们表明,我们的方法虽然仅在HarP中进行训练,但在HarP测试集和HCUnicamp中,其Dice系数均超过了文献中的其他方法。此外,还分别报告了在HCUnicamp体积中训练和测试的结果,以及癫痫和阿尔茨海默病数据中训练和测试之间的比较,反之亦然。尽管包括我们自己的方法在内的当前最先进方法在HarP中实现了超过0.9的Dice系数,但所有测试方法,包括我们自己的方法,在HCUnicamp切除区域都产生了假阳性,这表明在涉及切除术时,海马体分割方法仍有改进空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ac7/7892928/9edfbea1a240/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验