Suppr超能文献

单细胞基因组学和计算策略在研究常见疾病和人群水平变异中的应用。

Applications of single-cell genomics and computational strategies to study common disease and population-level variation.

机构信息

Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Genome Res. 2021 Oct;31(10):1728-1741. doi: 10.1101/gr.275430.121.

Abstract

The advent and rapid development of single-cell technologies have made it possible to study cellular heterogeneity at an unprecedented resolution and scale. Cellular heterogeneity underlies phenotypic differences among individuals, and studying cellular heterogeneity is an important step toward our understanding of the disease molecular mechanism. Single-cell technologies offer opportunities to characterize cellular heterogeneity from different angles, but how to link cellular heterogeneity with disease phenotypes requires careful computational analysis. In this article, we will review the current applications of single-cell methods in human disease studies and describe what we have learned so far from existing studies about human genetic variation. As single-cell technologies are becoming widely applicable in human disease studies, population-level studies have become a reality. We will describe how we should go about pursuing and designing these studies, particularly how to select study subjects, how to determine the number of cells to sequence per subject, and the needed sequencing depth per cell. We also discuss computational strategies for the analysis of single-cell data and describe how single-cell data can be integrated with bulk tissue data and data generated from genome-wide association studies. Finally, we point out open problems and future research directions.

摘要

单细胞技术的出现和快速发展使得以前所未有的分辨率和规模研究细胞异质性成为可能。细胞异质性是个体表型差异的基础,研究细胞异质性是理解疾病分子机制的重要步骤。单细胞技术为从不同角度描述细胞异质性提供了机会,但如何将细胞异质性与疾病表型联系起来需要仔细的计算分析。在本文中,我们将回顾单细胞方法在人类疾病研究中的当前应用,并描述从现有研究中我们对人类遗传变异的了解。随着单细胞技术在人类疾病研究中得到广泛应用,基于人群的研究已经成为现实。我们将描述如何开展和设计这些研究,特别是如何选择研究对象,如何确定每个对象要测序的细胞数量,以及每个细胞所需的测序深度。我们还讨论了单细胞数据分析的计算策略,并描述了如何将单细胞数据与批量组织数据和全基因组关联研究产生的数据进行整合。最后,我们指出了存在的问题和未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3953/8494214/0aa2f7f3e9be/1728f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验