Barsel S E, Wexler D E, Lefebvre P A
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095.
Genetics. 1988 Apr;118(4):637-48. doi: 10.1093/genetics/118.4.637.
The length of the flagella of Chlamydomonas reinhardtii cells is tightly regulated; both short-flagella and long-flagella mutants have been described. This report characterizes ten long-flagella mutants, including five newly isolated mutants, to determine the number of different loci conferring this phenotype, and to study interactions of mutants at different loci. The mutants, each of which was recessive in heterozygous diploids with wild type, fall into three unlinked complementation groups. One of these defines a new gene, lf3, which maps near the centromere of linkage group I. The flagellar length distributions in populations of each mutant were broad, with the longest flagella measuring four times the length of the longest flagella seen on wild-type cells. Each of the ten mutants had defective flagellar regrowth after amputation. Some of the mutants showed no regrowth within the time required for wild-type cells to regenerate flagella completely. Other mutants had subpopulations with rapid regeneration kinetics, and subpopulations with no observable regeneration. The mutants were each crossed to wild type to form temporary quadriflagellate, dikaryon cells; in each case the long flagella were rapidly shortened in the presence of the wild-type cytoplasm, demonstrating that the mutants were recessive, and that length control could be exerted on already assembled flagella.
莱茵衣藻细胞鞭毛的长度受到严格调控;短鞭毛和长鞭毛突变体均有报道。本报告对十个长鞭毛突变体进行了表征,其中包括五个新分离的突变体,以确定赋予该表型的不同基因座数量,并研究不同基因座突变体之间的相互作用。这些突变体在与野生型的杂合二倍体中均为隐性,分为三个不连锁的互补群。其中一个定义了一个新基因lf3,它位于连锁群I的着丝粒附近。每个突变体群体中的鞭毛长度分布都很广,最长的鞭毛长度是野生型细胞中最长鞭毛的四倍。这十个突变体在鞭毛截断后均有鞭毛再生缺陷。一些突变体在野生型细胞完全再生鞭毛所需的时间内没有再生。其他突变体有快速再生动力学的亚群和没有明显再生的亚群。每个突变体都与野生型杂交形成临时的四鞭毛双核细胞;在每种情况下,在野生型细胞质存在的情况下,长鞭毛会迅速缩短,这表明突变体是隐性的,并且长度控制可以作用于已经组装好的鞭毛。