Suppr超能文献

代谢建模与机器学习相结合整合纵向数据并确定肝脏X受体诱导的肝脂肪变性的起源。

Metabolic Modeling Combined With Machine Learning Integrates Longitudinal Data and Identifies the Origin of LXR-Induced Hepatic Steatosis.

作者信息

van Riel Natal A W, Tiemann Christian A, Hilbers Peter A J, Groen Albert K

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands.

出版信息

Front Bioeng Biotechnol. 2021 Feb 16;8:536957. doi: 10.3389/fbioe.2020.536957. eCollection 2020.

Abstract

Temporal multi-omics data can provide information about the dynamics of disease development and therapeutic response. However, statistical analysis of high-dimensional time-series data is challenging. Here we develop a novel approach to model temporal metabolomic and transcriptomic data by combining machine learning with metabolic models. ADAPT (Analysis of Dynamic Adaptations in Parameter Trajectories) performs metabolic trajectory modeling by introducing time-dependent parameters in differential equation models of metabolic systems. ADAPT translates structural uncertainty in the model, such as missing information about regulation, into a parameter estimation problem that is solved by iterative learning. We have now extended ADAPT to include both metabolic and transcriptomic time-series data by introducing a regularization function in the learning algorithm. The ADAPT learning algorithm was (re)formulated as a multi-objective optimization problem in which the estimation of trajectories of metabolic parameters is constrained by the metabolite data and refined by gene expression data. ADAPT was applied to a model of hepatic lipid and plasma lipoprotein metabolism to predict metabolic adaptations that are induced upon pharmacological treatment of mice by a Liver X receptor (LXR) agonist. We investigated the excessive accumulation of triglycerides (TG) in the liver resulting in the development of hepatic steatosis. ADAPT predicted that hepatic TG accumulation after LXR activation originates for 80% from an increased influx of free fatty acids. The model also correctly estimated that TG was stored in the cytosol rather than transferred to nascent very-low density lipoproteins. Through model-based integration of temporal metabolic and gene expression data we discovered that increased free fatty acid influx instead of lipogenesis is the main driver of LXR-induced hepatic steatosis. This study illustrates how ADAPT provides estimates for biomedically important parameters that cannot be measured directly, explaining (side-)effects of pharmacological treatment with LXR agonists.

摘要

时序多组学数据可以提供有关疾病发展动态和治疗反应的信息。然而,对高维时间序列数据进行统计分析具有挑战性。在此,我们开发了一种新方法,通过将机器学习与代谢模型相结合来对时序代谢组学和转录组学数据进行建模。ADAPT(参数轨迹动态适应性分析)通过在代谢系统的微分方程模型中引入时间相关参数来进行代谢轨迹建模。ADAPT将模型中的结构不确定性(例如关于调控的缺失信息)转化为一个通过迭代学习解决的参数估计问题。我们现在通过在学习算法中引入正则化函数,将ADAPT扩展到同时包含代谢和转录组学时间序列数据。ADAPT学习算法被重新表述为一个多目标优化问题,其中代谢参数轨迹的估计受代谢物数据约束,并通过基因表达数据进行优化。ADAPT被应用于肝脂质和血浆脂蛋白代谢模型,以预测肝脏X受体(LXR)激动剂对小鼠进行药物治疗后诱导的代谢适应性变化。我们研究了肝脏中甘油三酯(TG)的过度积累导致肝脂肪变性的发展。ADAPT预测,LXR激活后肝脏TG积累80%源于游离脂肪酸流入增加。该模型还正确估计了TG储存在细胞质中,而不是转移到新生的极低密度脂蛋白中。通过基于模型的时序代谢和基因表达数据整合,我们发现游离脂肪酸流入增加而非脂肪生成是LXR诱导肝脂肪变性的主要驱动因素。这项研究说明了ADAPT如何为无法直接测量的生物医学重要参数提供估计,解释LXR激动剂药物治疗的(副)作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f854/7921164/e46cee8a740f/fbioe-08-536957-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验