Suppr超能文献

利用动力学模型推断碳水化合物储存代谢对动态底物条件的适应性。

Using Kinetic Modelling to Infer Adaptations in Carbohydrate Storage Metabolism to Dynamic Substrate Conditions.

作者信息

Lao-Martil David, Verhagen Koen J A, Valdeira Caetano Ana H, Pardijs Ilse H, van Riel Natal A W, Wahl S Aljoscha

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands.

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

Metabolites. 2023 Jan 5;13(1):88. doi: 10.3390/metabo13010088.

Abstract

Microbial metabolism is strongly dependent on the environmental conditions. While these can be well controlled under laboratory conditions, large-scale bioreactors are characterized by inhomogeneities and consequently dynamic conditions for the organisms. How response to frequent perturbations in industrial bioreactors is still not understood mechanistically. To study the adjustments to prolonged dynamic conditions, we used published repeated substrate perturbation regime experimental data, extended it with proteomic measurements and used both for modelling approaches. Multiple types of data were combined; including quantitative metabolome, C enrichment and flux quantification data. Kinetic metabolic modelling was applied to study the relevant intracellular metabolic response dynamics. An existing model of yeast central carbon metabolism was extended, and different subsets of enzymatic kinetic constants were estimated. A novel parameter estimation pipeline based on combinatorial enzyme selection supplemented by regularization was developed to identify and predict the minimum enzyme and parameter adjustments from steady-state to dynamic substrate conditions. This approach predicted proteomic changes in hexose transport and phosphorylation reactions, which were additionally confirmed by proteome measurements. Nevertheless, the modelling also hints at a yet unknown kinetic or regulation phenomenon. Some intracellular fluxes could not be reproduced by mechanistic rate laws, including hexose transport and intracellular trehalase activity during substrate perturbation cycles.

摘要

微生物代谢强烈依赖于环境条件。虽然在实验室条件下这些条件可以得到很好的控制,但大规模生物反应器的特点是存在不均匀性,因此生物体会处于动态条件下。目前仍不清楚生物体如何应对工业生物反应器中频繁的扰动。为了研究对长期动态条件的适应性,我们使用了已发表的重复底物扰动实验数据,并通过蛋白质组学测量对其进行扩展,同时将两者用于建模方法。我们结合了多种类型的数据,包括定量代谢组、碳富集和通量定量数据。应用动力学代谢建模来研究相关的细胞内代谢反应动力学。扩展了现有的酵母中心碳代谢模型,并估计了酶动力学常数的不同子集。开发了一种基于组合酶选择并辅以正则化的新型参数估计流程,以识别和预测从稳态到动态底物条件下的最小酶和参数调整。该方法预测了己糖转运和磷酸化反应中的蛋白质组变化,蛋白质组测量进一步证实了这些变化。然而,建模也暗示了一种尚未知晓的动力学或调节现象。一些细胞内通量无法通过机械速率定律再现,包括底物扰动周期中的己糖转运和细胞内海藻糖酶活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57bf/9862193/f2c7dadab259/metabolites-13-00088-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验