Suppr超能文献

负载细胞和微凝胶珠的氧化海藻酸盐-明胶水凝胶的力学性能。

Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels.

作者信息

Distler T, Kretzschmar L, Schneidereit D, Girardo S, Goswami R, Friedrich O, Detsch R, Guck J, Boccaccini A R, Budday S

机构信息

Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.

Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.

出版信息

Biomater Sci. 2021 Apr 21;9(8):3051-3068. doi: 10.1039/d0bm02117b. Epub 2021 Mar 5.

Abstract

3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (≥6 mio ml) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.

摘要

3D打印技术,如生物制造,利用生物材料水凝胶内细胞的均匀分布和生长,最终目标是实现细胞分化、基质重塑和功能性组织类似物。然而,通常仅评估生物墨水或基质材料的力学性能,而细胞对水凝胶最终力学性能的详细影响仍未得到充分理解。在此,我们通过在小应变和大应变范围内的多模态复杂力学分析,研究含有细胞和球形聚丙烯酰胺(PAAm)微凝胶珠的水凝胶的性能。我们评估了不同填料浓度和非纤维氧化海藻酸盐 - 明胶水凝胶基质对压缩、拉伸和剪切中整体力学行为的单独贡献。通过材料建模,我们量化了描述软复合材料高度非线性力学响应的参数。我们的结果表明,当细胞和珠子浓度超过每毫升水凝胶四百万个时,刚度会显著下降。此外,高细胞浓度(≥600万个/毫升)的水凝胶在更大应变下表现出更明显的材料非线性和更快的应力松弛。我们的研究结果突出了细胞浓度作为影响最终水凝胶力学的关键参数,对载有微凝胶珠药物载体的水凝胶、生物制造和组织工程具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验