McCoy Rachel M, Julian Russell, Kumar Shoban R V, Ranjan Rajeev, Varala Kranthi, Li Ying
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
Plants (Basel). 2021 Feb 13;10(2):364. doi: 10.3390/plants10020364.
Upon sensing developmental or environmental cues, epigenetic regulators transform the chromatin landscape of a network of genes to modulate their expression and dictate adequate cellular and organismal responses. Knowledge of the specific biological processes and genomic loci controlled by each epigenetic regulator will greatly advance our understanding of epigenetic regulation in plants. To facilitate hypothesis generation and testing in this domain, we present EpiNet, an extensive gene regulatory network (GRN) featuring epigenetic regulators. EpiNet was enabled by (i) curated knowledge of epigenetic regulators involved in DNA methylation, histone modification, chromatin remodeling, and siRNA pathways; and (ii) a machine-learning network inference approach powered by a wealth of public transcriptome datasets. We applied GENIE3, a machine-learning network inference approach, to mine public Arabidopsis transcriptomes and construct tissue-specific GRNs with both epigenetic regulators and transcription factors as predictors. The resultant GRNs, named EpiNet, can now be intersected with individual transcriptomic studies on biological processes of interest to identify the most influential epigenetic regulators, as well as predicted gene targets of the epigenetic regulators. We demonstrate the validity of this approach using case studies of shoot and root apical meristem development.
在感知发育或环境线索时,表观遗传调控因子会改变基因网络的染色质景观,以调节其表达并决定适当的细胞和机体反应。了解每个表观遗传调控因子所控制的特定生物学过程和基因组位点,将极大地推动我们对植物表观遗传调控的理解。为了促进该领域的假设生成和检验,我们展示了EpiNet,这是一个以表观遗传调控因子为特色的广泛基因调控网络(GRN)。EpiNet的实现得益于:(i)对参与DNA甲基化、组蛋白修饰、染色质重塑和小干扰RNA(siRNA)途径的表观遗传调控因子的精心整理知识;以及(ii)由大量公共转录组数据集驱动的机器学习网络推理方法。我们应用GENIE3(一种机器学习网络推理方法)挖掘公共拟南芥转录组,并构建以表观遗传调控因子和转录因子作为预测因子的组织特异性GRN。由此产生的GRN(命名为EpiNet)现在可以与关于感兴趣的生物学过程的个体转录组学研究进行交叉,以识别最有影响力的表观遗传调控因子以及表观遗传调控因子的预测基因靶点。我们通过茎尖和根尖分生组织发育的案例研究证明了这种方法的有效性。