Suppr超能文献

用于胰岛素抵抗与多组学数据综合分析的深度学习

Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data.

作者信息

Huang Eunchong, Kim Sarah, Ahn TaeJin

机构信息

Department of Advanced Green Energy and Environment, Handong Global University, Pohang-si, Gyeongbuk 37554, Korea.

Department of Life Science, Handong Global University, Pohang-si, Gyeonbuk 37554, Korea.

出版信息

J Pers Med. 2021 Feb 15;11(2):128. doi: 10.3390/jpm11020128.

Abstract

Technological advances in next-generation sequencing (NGS) have made it possible to uncover extensive and dynamic alterations in diverse molecular components and biological pathways across healthy and diseased conditions. Large amounts of multi-omics data originating from emerging NGS experiments require feature engineering, which is a crucial step in the process of predictive modeling. The underlying relationship among multi-omics features in terms of insulin resistance is not well understood. In this study, using the multi-omics data of type II diabetes from the Integrative Human Microbiome Project, from 10,783 features, we conducted a data analytic approach to elucidate the relationship between insulin resistance and multi-omics features, including microbiome data. To better explain the impact of microbiome features on insulin classification, we used a developed deep neural network interpretation algorithm for each microbiome feature's contribution to the discriminative model output in the samples.

摘要

下一代测序(NGS)技术的进步使得在健康和疾病状态下揭示各种分子成分和生物途径中的广泛动态变化成为可能。来自新兴NGS实验的大量多组学数据需要进行特征工程,这是预测建模过程中的关键一步。目前对于胰岛素抵抗方面多组学特征之间的潜在关系尚不清楚。在本研究中,我们利用整合人类微生物组计划中II型糖尿病的多组学数据,从10783个特征中采用数据分析方法来阐明胰岛素抵抗与包括微生物组数据在内的多组学特征之间的关系。为了更好地解释微生物组特征对胰岛素分类的影响,我们针对每个微生物组特征对样本中判别模型输出的贡献,使用了一种开发的深度神经网络解释算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447d/7918166/f167a5677f49/jpm-11-00128-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验