Suppr超能文献

冬季超额死亡率(EWM)作为一种动态法医学工具:地点、时间、哪些条件、性别、种族和年龄。

Excess Winter Mortality (EWM) as a Dynamic Forensic Tool: Where, When, Which Conditions, Gender, Ethnicity and Age.

机构信息

Healthcare Analysis & Forecasting, Wantage, Oxfordshire OX12 0NE, UK.

出版信息

Int J Environ Res Public Health. 2021 Feb 23;18(4):2161. doi: 10.3390/ijerph18042161.

Abstract

To investigate the dynamic issues behind intra- and international variation in EWM (Excess Winter Mortality) using a rolling monthly EWM calculation. This is used to reveal seasonal changes in the EWM calculation and is especially relevant nearer to the equator where EWM does not reach a peak at the same time each year. In addition to latitude country specific factors determine EWM. Females generally show higher EWM. Differences between the genders are highly significant and seem to vary according to the mix of variables active each winter. The EWM for respiratory conditions in England and Wales ranges from 44% to 83%, which is about double the all-cause mortality equivalent. A similar magnitude of respiratory EWM is observed in other temperate countries. Even higher EWM can be seen for specific respiratory conditions. Age has a profound effect on EWM with a peak at puberty and then increases EWM at older ages. The gap between male and female EWM seems to act as a diagnostic tool reflecting the infectious/metrological mix in each winter. Difference due to ethnicity are also observed. An EWM equivalent calculation for sickness absence demonstrates how other health-related variables can be linked to EWM. Midway between the equator and the poles show the highest EWM since such areas tend to neglect the importance of keeping dwellings warm in the winter. Pandemic influenza does not elevate EWM, although seasonal influenza plays a part each winter. Pandemic influenza and changes in influenza strain/variant mix do, however, create structural breaks in the time series and this implies that comparing EWM between studies conducted over different times can be problematic. Cancer is an excellent example of the usefulness of rolling method since cancer EWM drifts each year, in some years increasing winter EWM and in other years diminishing it. In addition, analysis of sub-national EWM in the UK reveals high spatiotemporal granularity indicating roles for infectious outbreaks. The rolling method gives greater insight into the dynamic nature of EWM, which otherwise lies concealed in the current static method.

摘要

使用滚动逐月 EWM 计算来研究 EWM(超额冬季死亡率)的国内外变异背后的动态问题。这用于揭示 EWM 计算中的季节性变化,特别是在接近赤道的地方,那里的 EWM 每年不会在同一时间达到峰值。除了纬度,国家特定因素也决定了 EWM。女性通常表现出更高的 EWM。性别差异非常显著,似乎根据每个冬季活跃的变量组合而有所不同。英格兰和威尔士呼吸系统疾病的 EWM 范围为 44%至 83%,约为全因死亡率的两倍。在其他温带国家也观察到类似程度的呼吸系统 EWM。对于特定的呼吸系统疾病,甚至可以看到更高的 EWM。年龄对 EWM 有深远的影响,青春期达到峰值,然后随着年龄的增长而增加 EWM。男性和女性 EWM 之间的差距似乎是一种反映每个冬季传染性/气象混合的诊断工具。也观察到了由于种族而产生的差异。因病缺勤的 EWM 等效计算表明,其他与健康相关的变量如何与 EWM 相关联。在赤道和两极之间的中途地带,由于这些地区往往忽略了冬季保持住所温暖的重要性,因此 EWM 最高。大流行性流感不会升高 EWM,尽管季节性流感每年都会在每个冬季发挥作用。然而,大流行性流感和流感病毒株/变体组合的变化确实会在时间序列中造成结构断裂,这意味着将在不同时间进行的研究中的 EWM 进行比较可能会存在问题。癌症是滚动方法的一个很好的例子,因为癌症 EWM 每年都会漂移,在某些年份增加冬季 EWM,而在其他年份则减少它。此外,对英国次国家 EWM 的分析揭示了高度的时空粒度,表明了传染病爆发的作用。滚动方法更深入地了解了 EWM 的动态性质,否则这些性质会隐藏在当前的静态方法中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e4/7926905/9375cae72532/ijerph-18-02161-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验