Suppr超能文献

血浆白细胞介素-10 和胆固醇水平可能有助于了解健康个体中健康和肥胖之间的相互关系。

Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals.

机构信息

Department of Patient Care and Monitoring, Philips Research, 5656 AE Eindhoven, The Netherlands.

College of Human Sciences, Bangor University, Bangor LL57 2EF, UK.

出版信息

Int J Environ Res Public Health. 2021 Feb 12;18(4):1800. doi: 10.3390/ijerph18041800.

Abstract

Relationships between demographic, anthropometric, inflammatory, lipid and glucose tolerance markers in connection with the fat but fit paradigm were investigated by supervised and unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the principal component was preponderantly composed of glucose tolerance parameters. IL-10 and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body mass index (BMI), were the most important features according to Random Forest based recursive feature elimination. Decision Tree classification showed that these play a key role into assigning each individual in one of the four classes, with 70% accuracy, and acceptable classification agreement, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning showed that the glucose tolerance cluster explains the highest quote of the variance, supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to confirm these preliminary outcomes.

摘要

采用有监督和无监督学习的方法研究了与肥胖但健康的模式相关的人口统计学、人体测量学、炎症、脂质和葡萄糖耐量标志物之间的关系。使用来自 81 名明显健康参与者(87%为女性)的数据生成了脂肪和健康的四个类别。主成分分析(PCA)显示,主要成分主要由葡萄糖耐量参数组成。根据基于随机森林的递归特征消除,IL-10 和高密度脂蛋白、低密度脂蛋白(LDL)和总胆固醇以及体重指数(BMI)是最重要的特征。决策树分类表明,这些特征对于将每个个体分配到四个类别中的一个中起着关键作用,准确率为 70%,分类一致性可接受,κ=0.54。然而,准确率为 88%、κ=0.79 的最佳分类器是朴素贝叶斯。LDL 和 BMI 部分介导了健康和肥胖之间的关系。尽管无监督学习表明,葡萄糖耐量聚类解释了最高的方差,但有监督学习表明,IL-10、胆固醇水平和 BMI 的重要性大于葡萄糖耐量 PCA 聚类。这些结果表明,健康和肥胖可能通过抗炎反应和胆固醇水平相互关联。需要进行随机对照试验来证实这些初步结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da9f/7917930/54f02b16f018/ijerph-18-01800-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验