Herrero Miguel A, Gallego Rebeca, Ramos Milagros, Lopez Juan Manuel, de Arcas Guillermo, Gonzalez-Nieto Daniel
Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain.
Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Brain Sci. 2021 Feb 27;11(3):298. doi: 10.3390/brainsci11030298.
During the transition from neonate to adulthood, brain maturation establishes coherence between behavioral states-wakefulness, non-rapid eye movement, and rapid eye movement sleep. In animal models few studies have characterized and analyzed cerebral rhythms and the sleep-wake cycle in early ages, in relation to adulthood. Since the analysis of sleep in early ages can be used as a predictive model of brain development and the subsequent emergence of neural disturbances in adults, we performed a study on late neonatal mice, an age not previously characterized. We acquired longitudinal 24 h electroencephalogram and electromyogram recordings and performed time and spectral analyses. We compared both age groups and found that late neonates: (i) spent more time in wakefulness and less time in non-rapid eye movement sleep, (ii) showed an increased relative band power in delta, which, however, reduced in theta during each behavioral state, (iii) showed a reduced relative band power in beta during wakefulness and non-rapid eye movement sleep, and (iv) manifested an increased total power over all frequencies. The data presented here might have implications expanding our knowledge of cerebral rhythms in early ages for identification of potential biomarkers in preclinical models of neurodegeneration.
从新生儿期过渡到成年期的过程中,大脑成熟在行为状态(清醒、非快速眼动睡眠和快速眼动睡眠)之间建立了连贯性。在动物模型中,很少有研究对早期的脑节律和睡眠-觉醒周期进行表征和分析,并与成年期相关联。由于对早期睡眠的分析可作为大脑发育以及随后成人出现神经障碍的预测模型,我们对晚新生小鼠进行了一项研究,此前该年龄段尚无相关特征描述。我们获取了24小时的纵向脑电图和肌电图记录,并进行了时间和频谱分析。我们比较了两个年龄组,发现晚新生小鼠:(i)清醒时间更长,非快速眼动睡眠时间更短;(ii)在每个行为状态下,δ波相对频段功率增加,然而θ波相对频段功率降低;(iii)在清醒和非快速眼动睡眠期间,β波相对频段功率降低;(iv)所有频率的总功率增加。本文所呈现的数据可能有助于扩展我们对早期脑节律的认识,以便在神经退行性疾病的临床前模型中识别潜在的生物标志物。