Wojszvzyk Léo, Nguyen Anne, Coutrot Anne-Lise, Zhang Cheng, Vest Benjamin, Greffet Jean-Jacques
Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France.
Nat Commun. 2021 Mar 5;12(1):1492. doi: 10.1038/s41467-021-21752-w.
Incandescent sources such as hot membranes and globars are widely used for mid-infrared spectroscopic applications. The emission properties of these sources can be tailored by means of resonant metasurfaces: control of the spectrum, polarization, and directivity have been reported. For detection or communication applications, fast temperature modulation is desirable but is still a challenge due to thermal inertia. Reducing thermal inertia can be achieved using nanoscale structures at the expense of a low absorption and emission cross-section. Here, we introduce a metasurface that combines nanoscale heaters to ensure fast thermal response and nanophotonic resonances to provide large monochromatic and polarized emissivity. The metasurface is based on platinum and silicon nitride and can sustain high temperatures. We report a peak emissivity of 0.8 and an operation up to 20 MHz, six orders of magnitude faster than commercially available hot membranes.
诸如热膜和热辐射计之类的白炽光源被广泛用于中红外光谱应用。这些光源的发射特性可以通过谐振超表面来调整:已经报道了对光谱、偏振和方向性的控制。对于检测或通信应用,快速温度调制是可取的,但由于热惯性仍然是一个挑战。使用纳米级结构可以降低热惯性,但代价是吸收和发射横截面较低。在这里,我们介绍一种超表面,它结合了纳米级加热器以确保快速热响应和纳米光子共振以提供大的单色和偏振发射率。该超表面基于铂和氮化硅,能够承受高温。我们报告其峰值发射率为0.8,工作频率高达20兆赫,比市售热膜快六个数量级。