Chang Sheng-Mao, Yang Meng, Lu Wenbin, Huang Yu-Jyun, Huang Yueyang, Hung Hung, Miecznikowski Jeffrey C, Lu Tzu-Pin, Tzeng Jung-Ying
Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan.
Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
Bioinformatics. 2021 Aug 25;37(16):2259-2265. doi: 10.1093/bioinformatics/btab125.
Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently analyzing these data to discover novel disease genes or mechanisms. A common strategy is to regress the outcomes on all omics variables in a gene set. However, this approach suffers from problems associated with high-dimensional inference.
We introduce a tensor-based framework for variable-wise inference in multi-omics analysis. By accounting for the matrix structure of an individual's multi-omics data, the proposed tensor methods incorporate the relationship among omics effects, reduce the number of parameters, and boost the modeling efficiency. We derive the variable-specific tensor test and enhance computational efficiency of tensor modeling. Using simulations and data applications on the Cancer Cell Line Encyclopedia (CCLE), we demonstrate our method performs favorably over baseline methods and will be useful for gaining biological insights in multi-omics analysis.
R function and instruction are available from the authors' website: https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf.
Supplementary data are available at Bioinformatics online.
在技术进步和成本降低的推动下,从多个组学平台收集受试者数据是可行的。每个平台评估不同的分子事件,而挑战在于有效地分析这些数据以发现新的疾病基因或机制。一种常见的策略是在基因集中对所有组学变量的结果进行回归分析。然而,这种方法存在与高维推断相关的问题。
我们引入了一种基于张量的框架,用于多组学分析中的逐变量推断。通过考虑个体多组学数据的矩阵结构,所提出的张量方法纳入了组学效应之间的关系,减少了参数数量,并提高了建模效率。我们推导了特定变量的张量检验,并提高了张量建模的计算效率。通过对癌细胞系百科全书(CCLE)的模拟和数据应用,我们证明我们的方法优于基线方法,并且将有助于在多组学分析中获得生物学见解。
R函数和说明可从作者网站获取:https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf。
补充数据可在《生物信息学》在线获取。