Suppr超能文献

使用基于张量的关联检验对多组学数据进行基因集整合分析。

Gene-set integrative analysis of multi-omics data using tensor-based association test.

作者信息

Chang Sheng-Mao, Yang Meng, Lu Wenbin, Huang Yu-Jyun, Huang Yueyang, Hung Hung, Miecznikowski Jeffrey C, Lu Tzu-Pin, Tzeng Jung-Ying

机构信息

Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan.

Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Bioinformatics. 2021 Aug 25;37(16):2259-2265. doi: 10.1093/bioinformatics/btab125.

Abstract

MOTIVATION

Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently analyzing these data to discover novel disease genes or mechanisms. A common strategy is to regress the outcomes on all omics variables in a gene set. However, this approach suffers from problems associated with high-dimensional inference.

RESULTS

We introduce a tensor-based framework for variable-wise inference in multi-omics analysis. By accounting for the matrix structure of an individual's multi-omics data, the proposed tensor methods incorporate the relationship among omics effects, reduce the number of parameters, and boost the modeling efficiency. We derive the variable-specific tensor test and enhance computational efficiency of tensor modeling. Using simulations and data applications on the Cancer Cell Line Encyclopedia (CCLE), we demonstrate our method performs favorably over baseline methods and will be useful for gaining biological insights in multi-omics analysis.

AVAILABILITY AND IMPLEMENTATION

R function and instruction are available from the authors' website: https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在技术进步和成本降低的推动下,从多个组学平台收集受试者数据是可行的。每个平台评估不同的分子事件,而挑战在于有效地分析这些数据以发现新的疾病基因或机制。一种常见的策略是在基因集中对所有组学变量的结果进行回归分析。然而,这种方法存在与高维推断相关的问题。

结果

我们引入了一种基于张量的框架,用于多组学分析中的逐变量推断。通过考虑个体多组学数据的矩阵结构,所提出的张量方法纳入了组学效应之间的关系,减少了参数数量,并提高了建模效率。我们推导了特定变量的张量检验,并提高了张量建模的计算效率。通过对癌细胞系百科全书(CCLE)的模拟和数据应用,我们证明我们的方法优于基线方法,并且将有助于在多组学分析中获得生物学见解。

可用性和实现

R函数和说明可从作者网站获取:https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
Gene-set integrative analysis of multi-omics data using tensor-based association test.
Bioinformatics. 2021 Aug 25;37(16):2259-2265. doi: 10.1093/bioinformatics/btab125.
3
Integrative gene set analysis of multi-platform data with sample heterogeneity.
Bioinformatics. 2014 Jun 1;30(11):1501-7. doi: 10.1093/bioinformatics/btu060. Epub 2014 Jan 30.
4
BioSTD: A New Tensor Multi-View Framework via Combining Tensor Decomposition and Strong Complementarity Constraint for Analyzing Cancer Omics Data.
IEEE J Biomed Health Inform. 2023 Oct;27(10):5187-5198. doi: 10.1109/JBHI.2023.3299274. Epub 2023 Oct 5.
5
Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data.
Bioinformatics. 2017 Sep 1;33(17):2706-2714. doi: 10.1093/bioinformatics/btx176.
6
MONTI: A Multi-Omics Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis.
Front Genet. 2021 Sep 10;12:682841. doi: 10.3389/fgene.2021.682841. eCollection 2021.
7
Bayesian integrative model for multi-omics data with missingness.
Bioinformatics. 2018 Nov 15;34(22):3801-3808. doi: 10.1093/bioinformatics/bty775.
8
Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data.
Bioinformatics. 2021 Nov 18;37(22):4091-4099. doi: 10.1093/bioinformatics/btab403.
9
Multi-insight visualization of multi-omics data via ensemble dimension reduction and tensor factorization.
Bioinformatics. 2019 May 15;35(10):1625-1633. doi: 10.1093/bioinformatics/bty847.
10
DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays.
Bioinformatics. 2019 Sep 1;35(17):3055-3062. doi: 10.1093/bioinformatics/bty1054.

引用本文的文献

2
Weighted Euclidean balancing for a matrix exposure in estimating causal effect.
Int J Biostat. 2025 May 23. doi: 10.1515/ijb-2024-0021.
5
A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.
Cell. 2022 Mar 3;185(5):916-938.e58. doi: 10.1016/j.cell.2022.01.012. Epub 2022 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验