Suppr超能文献

RNA 聚合酶 II 上翻译后修饰的复杂性——相声。

Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.

机构信息

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States.

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; The Institute for Cellular and Molecular Biology. University of Texas at Austin, Austin, TX 78712, United States.

出版信息

J Mol Biol. 2021 Jul 9;433(14):166912. doi: 10.1016/j.jmb.2021.166912. Epub 2021 Mar 5.

Abstract

The highly conserved C-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises a consensus heptad (YSPTSPS) repeated multiple times. Despite the simplicity of its sequence, the essential CTD domain orchestrates eukaryotic transcription and co-transcriptional processes, including transcription initiation, elongation, and termination, and mRNA processing. These distinct facets of the transcription cycle rely on specific post-translational modifications (PTM) of the CTD, in which five out of the seven residues in the heptad repeat are subject to phosphorylation. A hypothesis termed the "CTD code" has been proposed in which these PTMs and their combinations generate a sophisticated landscape for spatiotemporal recruitment of transcription regulators to Pol II. In this review, we summarize the recent experimental evidence understanding the biological role of the CTD, implicating a context-dependent theme that significantly enhances the ability of accurate transcription by RNA polymerase II. Furthermore, feedback communication between the CTD and histone modifications coordinates chromatin states with RNA polymerase II-mediated transcription, ensuring the effective and accurate conversion of information into cellular responses.

摘要

RNA 聚合酶 II 大亚基高度保守的 C 端结构域(CTD)包含一个重复多次的共有七肽(YSPTSPS)。尽管其序列简单,但必需的 CTD 结构域协调真核转录和共转录过程,包括转录起始、延伸和终止以及 mRNA 加工。转录周期的这些不同方面依赖于 CTD 的特定翻译后修饰(PTM),其中七肽重复中的五个残基都受到磷酸化。已经提出了一个称为“CTD 密码”的假说,其中这些 PTM 及其组合为转录调节剂到 Pol II 的时空募集生成一个复杂的景观。在这篇综述中,我们总结了理解 CTD 生物学作用的最新实验证据,表明一个依赖于上下文的主题,显著增强了 RNA 聚合酶 II 进行准确转录的能力。此外,CTD 和组蛋白修饰之间的反馈通信协调染色质状态与 RNA 聚合酶 II 介导的转录,确保信息有效地准确转化为细胞反应。

相似文献

1
Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.
J Mol Biol. 2021 Jul 9;433(14):166912. doi: 10.1016/j.jmb.2021.166912. Epub 2021 Mar 5.
2
The RNA polymerase II CTD coordinates transcription and RNA processing.
Genes Dev. 2012 Oct 1;26(19):2119-37. doi: 10.1101/gad.200303.112.
3
Removing quote marks from the RNA polymerase II CTD 'code'.
Biosystems. 2021 Sep;207:104468. doi: 10.1016/j.biosystems.2021.104468. Epub 2021 Jun 30.
4
Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
Biochem Biophys Res Commun. 2022 Apr 9;599:81-86. doi: 10.1016/j.bbrc.2022.02.039. Epub 2022 Feb 11.
6
Cracking the RNA polymerase II CTD code.
Trends Genet. 2008 Jun;24(6):280-8. doi: 10.1016/j.tig.2008.03.008. Epub 2008 May 3.
7
Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
BMC Res Notes. 2015 Oct 29;8:616. doi: 10.1186/s13104-015-1569-y.
8
Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins.
Mol Cell. 2019 Jun 20;74(6):1164-1174.e4. doi: 10.1016/j.molcel.2019.04.008. Epub 2019 May 1.
9
The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
Nat Rev Mol Cell Biol. 2017 Apr;18(4):263-273. doi: 10.1038/nrm.2017.10. Epub 2017 Mar 1.
10
A combinatorial view of old and new RNA polymerase II modifications.
Transcription. 2020 Apr;11(2):66-82. doi: 10.1080/21541264.2020.1762468. Epub 2020 May 13.

引用本文的文献

2
Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.
Nat Struct Mol Biol. 2025 Apr;32(4):687-697. doi: 10.1038/s41594-024-01453-w. Epub 2025 Jan 8.
5
The cell biology of HIV-1 latency and rebound.
Retrovirology. 2024 Apr 5;21(1):6. doi: 10.1186/s12977-024-00639-w.
7
The anatomy of transcriptionally active chromatin loops in Drosophila primary spermatocytes using super-resolution microscopy.
PLoS Genet. 2023 Mar 3;19(3):e1010654. doi: 10.1371/journal.pgen.1010654. eCollection 2023 Mar.
8
The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation.
Oncogene. 2022 Jul;41(29):3665-3679. doi: 10.1038/s41388-022-02378-8. Epub 2022 Jun 15.
9
TOR complex 2 contributes to regulation of gene expression via inhibiting Gcn5 recruitment to subtelomeric and DNA replication stress genes.
PLoS Genet. 2022 Feb 14;18(2):e1010061. doi: 10.1371/journal.pgen.1010061. eCollection 2022 Feb.
10
Live imaging of transcription sites using an elongating RNA polymerase II-specific probe.
J Cell Biol. 2022 Feb 7;221(2). doi: 10.1083/jcb.202104134. Epub 2021 Dec 2.

本文引用的文献

1
PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC.
Nat Commun. 2021 Oct 19;12(1):6078. doi: 10.1038/s41467-021-26360-2.
2
Structural basis for CDK7 activation by MAT1 and Cyclin H.
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26739-26748. doi: 10.1073/pnas.2010885117. Epub 2020 Oct 14.
3
The cryoelectron microscopy structure of the human CDK-activating kinase.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22849-22857. doi: 10.1073/pnas.2009627117. Epub 2020 Aug 27.
4
JMJD5 couples with CDK9 to release the paused RNA polymerase II.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19888-19895. doi: 10.1073/pnas.2005745117. Epub 2020 Aug 3.
5
Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription.
Nucleic Acids Res. 2020 Jul 27;48(13):7154-7168. doi: 10.1093/nar/gkaa474.
6
Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro.
J Mol Biol. 2020 Jun 26;432(14):4092-4107. doi: 10.1016/j.jmb.2020.05.007. Epub 2020 May 19.
7
The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS.
Nat Commun. 2020 May 1;11(1):2181. doi: 10.1038/s41467-020-16082-2.
8
Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome.
Elife. 2020 Jan 10;9:e53199. doi: 10.7554/eLife.53199.
9
Histone H2AK119 Mono-Ubiquitination Is Essential for Polycomb-Mediated Transcriptional Repression.
Mol Cell. 2020 Feb 20;77(4):840-856.e5. doi: 10.1016/j.molcel.2019.11.021. Epub 2019 Dec 26.
10
Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation.
ACS Chem Biol. 2019 Oct 18;14(10):2264-2275. doi: 10.1021/acschembio.9b00610. Epub 2019 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验