Suppr超能文献

使用深度特征拼接技术进行COVID-19分类。

COVID-19 classification using deep feature concatenation technique.

作者信息

Saad Waleed, Shalaby Wafaa A, Shokair Mona, El-Samie Fathi Abd, Dessouky Moawad, Abdellatef Essam

机构信息

Department of Electrical and Electronics Engineering, Electronics and Electrical Communication Engineering, Menoufia University, Shibin el Kom, Egypt.

Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi, Ar Riyadh Saudi Arabia.

出版信息

J Ambient Intell Humaniz Comput. 2022;13(4):2025-2043. doi: 10.1007/s12652-021-02967-7. Epub 2021 Mar 2.

Abstract

Detecting COVID-19 from medical images is a challenging task that has excited scientists around the world. COVID-19 started in China in 2019, and it is still spreading even now. Chest X-ray and Computed Tomography (CT) scan are the most important imaging techniques for diagnosing COVID-19. All researchers are looking for effective solutions and fast treatment methods for this epidemic. To reduce the need for medical experts, fast and accurate automated detection techniques are introduced. Deep learning convolution neural network (DL-CNN) technologies are showing remarkable results for detecting cases of COVID-19. In this paper, deep feature concatenation (DFC) mechanism is utilized in two different ways. In the first one, DFC links deep features extracted from X-ray and CT scan using a simple proposed CNN. The other way depends on DFC to combine features extracted from either X-ray or CT scan using the proposed CNN architecture and two modern pre-trained CNNs: ResNet and GoogleNet. The DFC mechanism is applied to form a definitive classification descriptor. The proposed CNN architecture consists of three deep layers to overcome the problem of large time consumption. For each image type, the proposed CNN performance is studied using different optimization algorithms and different values for the maximum number of epochs, the learning rate (LR), and mini-batch (M-B) size. Experiments have demonstrated the superiority of the proposed approach compared to other modern and state-of-the-art methodologies in terms of accuracy, precision, recall and f_score.

摘要

从医学图像中检测新型冠状病毒肺炎(COVID-19)是一项具有挑战性的任务,它激发了全球科学家的兴趣。COVID-19于2019年在中国出现,至今仍在传播。胸部X光和计算机断层扫描(CT)是诊断COVID-19最重要的成像技术。所有研究人员都在寻找针对这种流行病的有效解决方案和快速治疗方法。为了减少对医学专家的需求,人们引入了快速且准确的自动检测技术。深度学习卷积神经网络(DL-CNN)技术在检测COVID-19病例方面显示出显著成果。在本文中,深度特征拼接(DFC)机制以两种不同方式被使用。第一种方式是,DFC使用一个简单的自定义卷积神经网络(CNN)来连接从X光和CT扫描中提取的深度特征。另一种方式则是依靠DFC,使用自定义的CNN架构以及两个现代预训练的CNN(ResNet和GoogleNet)来组合从X光或CT扫描中提取的特征。DFC机制被应用以形成一个确定的分类描述符。自定义的CNN架构由三个深层组成,以克服耗时过长的问题。对于每种图像类型,使用不同的优化算法以及不同的最大轮次、学习率(LR)和小批量(M-B)大小值来研究自定义CNN的性能。实验证明,与其他现代和最先进的方法相比,该方法在准确性、精确率、召回率和F值方面具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b2b/7924021/a38ff08ae396/12652_2021_2967_Fig1_HTML.jpg

相似文献

1
COVID-19 classification using deep feature concatenation technique.
J Ambient Intell Humaniz Comput. 2022;13(4):2025-2043. doi: 10.1007/s12652-021-02967-7. Epub 2021 Mar 2.
5
An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network.
Comput Biol Med. 2022 May;144:105383. doi: 10.1016/j.compbiomed.2022.105383. Epub 2022 Mar 10.
6
Concat_CNN: A Model to Detect COVID-19 from Chest X-ray Images with Deep Learning.
SN Comput Sci. 2022;3(4):305. doi: 10.1007/s42979-022-01182-1. Epub 2022 May 23.
8
CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images.
Sensors (Basel). 2023 Jan 25;23(3):1356. doi: 10.3390/s23031356.
9
An Efficient Deep Learning Method for Detection of COVID-19 Infection Using Chest X-ray Images.
Diagnostics (Basel). 2022 Dec 30;13(1):131. doi: 10.3390/diagnostics13010131.
10
Automatic prediction of COVID- 19 from chest images using modified ResNet50.
Multimed Tools Appl. 2021;80(17):26451-26463. doi: 10.1007/s11042-021-10783-6. Epub 2021 May 4.

引用本文的文献

2
A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022.
Healthcare (Basel). 2023 Aug 24;11(17):2388. doi: 10.3390/healthcare11172388.
4
Self-paced Multi-view Learning for CT-based severity assessment of COVID-19.
Biomed Signal Process Control. 2023 May;83:104672. doi: 10.1016/j.bspc.2023.104672. Epub 2023 Feb 8.
5
Coronavirus disease identification using Multi-subband feature analysis in DWT domain.
Procedia Comput Sci. 2023;218:574-584. doi: 10.1016/j.procs.2023.01.039. Epub 2023 Jan 31.
6
Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography.
Inform Med Unlocked. 2023;36:101158. doi: 10.1016/j.imu.2022.101158. Epub 2022 Dec 31.
8
Combined Cloud-Based Inference System for the Classification of COVID-19 in CT-Scan and X-Ray Images.
New Gener Comput. 2023;41(1):61-84. doi: 10.1007/s00354-022-00195-x. Epub 2022 Nov 20.
10
Predicting pattern of coronavirus using X-ray and CT scan images.
Netw Model Anal Health Inform Bioinform. 2022;11(1):39. doi: 10.1007/s13721-022-00382-2. Epub 2022 Oct 5.

本文引用的文献

1
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
3
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.
4
AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system.
Appl Soft Comput. 2021 Jan;98:106897. doi: 10.1016/j.asoc.2020.106897. Epub 2020 Nov 10.
5
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.
8
A Review of Coronavirus Disease-2019 (COVID-19).
Indian J Pediatr. 2020 Apr;87(4):281-286. doi: 10.1007/s12098-020-03263-6. Epub 2020 Mar 13.
9
Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing.
Radiology. 2020 Aug;296(2):E41-E45. doi: 10.1148/radiol.2020200343. Epub 2020 Feb 12.
10
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验