Suppr超能文献

机器学习在微生物生态学、人类微生物组研究和环境监测中的应用。

Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring.

作者信息

Ghannam Ryan B, Techtmann Stephen M

机构信息

Department of Biological Sciences, Michigan Technological University, Houghton MI, United States.

出版信息

Comput Struct Biotechnol J. 2021 Jan 27;19:1092-1107. doi: 10.1016/j.csbj.2021.01.028. eCollection 2021.

Abstract

Advances in nucleic acid sequencing technology have enabled expansion of our ability to profile microbial diversity. These large datasets of taxonomic and functional diversity are key to better understanding microbial ecology. Machine learning has proven to be a useful approach for analyzing microbial community data and making predictions about outcomes including human and environmental health. Machine learning applied to microbial community profiles has been used to predict disease states in human health, environmental quality and presence of contamination in the environment, and as trace evidence in forensics. Machine learning has appeal as a powerful tool that can provide deep insights into microbial communities and identify patterns in microbial community data. However, often machine learning models can be used as black boxes to predict a specific outcome, with little understanding of how the models arrived at predictions. Complex machine learning algorithms often may value higher accuracy and performance at the sacrifice of interpretability. In order to leverage machine learning into more translational research related to the microbiome and strengthen our ability to extract meaningful biological information, it is important for models to be interpretable. Here we review current trends in machine learning applications in microbial ecology as well as some of the important challenges and opportunities for more broad application of machine learning to understanding microbial communities.

摘要

核酸测序技术的进步使我们能够拓展对微生物多样性进行分析的能力。这些关于分类学和功能多样性的大型数据集是更好地理解微生物生态学的关键。机器学习已被证明是分析微生物群落数据以及预测包括人类和环境健康等结果的一种有用方法。应用于微生物群落图谱的机器学习已被用于预测人类健康中的疾病状态、环境质量以及环境中的污染情况,还可作为法医学中的微量证据。机器学习作为一种强大的工具具有吸引力,它能够深入洞察微生物群落并识别微生物群落数据中的模式。然而,机器学习模型常常被用作黑箱来预测特定结果,而对模型如何得出预测结果却了解甚少。复杂的机器学习算法往往可能以牺牲可解释性为代价来追求更高的准确性和性能。为了将机器学习应用于更多与微生物组相关的转化研究,并增强我们提取有意义生物学信息的能力,模型具有可解释性很重要。在此,我们综述机器学习在微生物生态学中的应用当前趋势,以及机器学习更广泛应用于理解微生物群落所面临的一些重要挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0807/7892807/57b530af9207/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验