Suppr超能文献

人类微生物组数据分类器的比较研究

Comparative study of classifiers for human microbiome data.

作者信息

Wang Xu-Wen, Liu Yang-Yu

机构信息

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.

Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

出版信息

Med Microecol. 2020 Jun;4. doi: 10.1016/j.medmic.2020.100013. Epub 2020 May 11.

Abstract

Accumulated evidence has shown that commensal microorganisms play key roles in human physiology and diseases. Dysbiosis of the human-associated microbial communities, often referred to as the human microbiome, has been associated with many diseases. Applying supervised classification analysis to the human microbiome data can help us identify subsets of microorganisms that are highly discriminative and hence build prediction models that can accurately classify unlabeled samples. Here, we systematically compare two state-of-the-art ensemble classifiers: Random Forests (RF), eXtreme Gradient Boosting decision trees (XGBoost) and two traditional methods: The elastic net (ENET) and Support Vector Machine (SVM) in the classification analysis of 29 benchmark human microbiome datasets. We find that XGBoost outperforms all other methods only in a few benchmark datasets. Overall, the XGBoost, RF and ENET display comparable performance in the remaining benchmark datasets. The training time of XGBoost is much longer than others, partially due to the much larger number of hyperparameters in XGBoost. We also find that the most important features selected by the four classifiers partially overlap. Yet, the difference between their classification performance is almost independent of this overlap.

摘要

越来越多的证据表明,共生微生物在人体生理和疾病中发挥着关键作用。与人类相关的微生物群落失调,通常被称为人类微生物组,与许多疾病有关。将监督分类分析应用于人类微生物组数据可以帮助我们识别具有高度区分性的微生物子集,从而建立能够准确分类未标记样本的预测模型。在这里,我们系统地比较了两种最先进的集成分类器:随机森林(RF)、极端梯度提升决策树(XGBoost)以及两种传统方法:弹性网络(ENET)和支持向量机(SVM),对29个基准人类微生物组数据集进行分类分析。我们发现XGBoost仅在少数基准数据集中优于所有其他方法。总体而言,XGBoost、RF和ENET在其余基准数据集中表现出可比的性能。XGBoost的训练时间比其他方法长得多,部分原因是XGBoost中的超参数数量要多得多。我们还发现,四个分类器选择的最重要特征部分重叠。然而,它们分类性能之间的差异几乎与这种重叠无关。

相似文献

1
Comparative study of classifiers for human microbiome data.人类微生物组数据分类器的比较研究
Med Microecol. 2020 Jun;4. doi: 10.1016/j.medmic.2020.100013. Epub 2020 May 11.

引用本文的文献

本文引用的文献

1
The Microbiota-Gut-Brain Axis.肠道微生物群-肠-脑轴。
Physiol Rev. 2019 Oct 1;99(4):1877-2013. doi: 10.1152/physrev.00018.2018.
2
Species-level functional profiling of metagenomes and metatranscriptomes.宏基因组和宏转录组的物种水平功能分析。
Nat Methods. 2018 Nov;15(11):962-968. doi: 10.1038/s41592-018-0176-y. Epub 2018 Oct 30.
9
The Human Intestinal Microbiome in Health and Disease.健康与疾病中的人类肠道微生物群
N Engl J Med. 2016 Dec 15;375(24):2369-2379. doi: 10.1056/NEJMra1600266.
10
Deep learning for computational biology.用于计算生物学的深度学习。
Mol Syst Biol. 2016 Jul 29;12(7):878. doi: 10.15252/msb.20156651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验