Suppr超能文献

在分探测器自适应光学扫描激光检眼镜图像中自动检测视锥光感受器。

Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

作者信息

Cunefare David, Cooper Robert F, Higgins Brian, Katz David F, Dubra Alfredo, Carroll Joseph, Farsiu Sina

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.

Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.

出版信息

Biomed Opt Express. 2016 Apr 27;7(5):2036-50. doi: 10.1364/BOE.7.002036. eCollection 2016 May 1.

Abstract

Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

摘要

对活体视网膜中视锥光感受器镶嵌结构进行定量分析,对许多眼部疾病的早期诊断和预后评估可能具有重要价值。基于非共焦分裂探测器的自适应光学扫描激光检眼镜(AOSLO)成像能够显示出视锥光感受器内节镶嵌结构,而这种结构在共焦AOSLO成像中常常无法看到。尽管针对共焦AOSLO图像的自动视锥分割算法取得了一些进展,但目前对分裂探测器AOSLO图像进行定量分析仍是一项耗时的手动操作。在本文中,我们提出了一种用于在分裂探测器AOSLO图像中检测视锥的全自动自适应滤波和局部检测(AFLD)方法。我们在来自10名受试者的80张图像上验证了我们的算法,将我们的AFLD算法与专家分级结果进行比较时,总体平均骰子系数为0.95(标准差0.03)。这与观察者间的骰子系数0.94(标准差0.04)相当。据我们所知,这是首次应用于分裂探测器AOSLO图像的经过验证的全自动分割方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f91b/4871101/ab3e768822e3/boe-7-5-2036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验