Suppr超能文献

基于知识的单细胞 RNA-Seq 数据中细粒度免疫细胞类型的分类。

Knowledge-based classification of fine-grained immune cell types in single-cell RNA-Seq data.

机构信息

Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Sage Bionetworks, Seattle, WA 98109, USA.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab039.

Abstract

Single-cell RNA sequencing (scRNA-Seq) is an emerging strategy for characterizing immune cell populations. Compared to flow or mass cytometry, scRNA-Seq could potentially identify cell types and activation states that lack precise cell surface markers. However, scRNA-Seq is currently limited due to the need to manually classify each immune cell from its transcriptional profile. While recently developed algorithms accurately annotate coarse cell types (e.g. T cells versus macrophages), making fine distinctions (e.g. CD8+ effector memory T cells) remains a difficult challenge. To address this, we developed a machine learning classifier called ImmClassifier that leverages a hierarchical ontology of cell type. We demonstrate that its predictions are highly concordant with flow-based markers from CITE-seq and outperforms other tools (+15% recall, +14% precision) in distinguishing fine-grained cell types with comparable performance on coarse ones. Thus, ImmClassifier can be used to explore more deeply the heterogeneity of the immune system in scRNA-Seq experiments.

摘要

单细胞 RNA 测序 (scRNA-Seq) 是一种新兴的免疫细胞群体特征分析策略。与流式细胞术或质谱流式细胞术相比,scRNA-Seq 有可能鉴定缺乏精确细胞表面标志物的细胞类型和激活状态。然而,由于需要从转录谱手动对每个免疫细胞进行分类,scRNA-Seq 目前受到限制。虽然最近开发的算法可以准确注释粗细胞类型(例如 T 细胞与巨噬细胞),但要进行精细区分(例如 CD8+效应记忆 T 细胞)仍然是一个具有挑战性的难题。为了解决这个问题,我们开发了一种名为 ImmClassifier 的机器学习分类器,该分类器利用了细胞类型的层次本体。我们证明,它的预测与 CITE-seq 的基于流式的标志物高度一致,并且在区分精细的细胞类型方面优于其他工具(召回率提高 15%,精度提高 14%),而在粗细胞类型上具有可比的性能。因此,ImmClassifier 可用于更深入地探索 scRNA-Seq 实验中免疫系统的异质性。

相似文献

5
Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.深度学习在单细胞 RNA 测序数据分析中的应用:综述。
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):814-835. doi: 10.1016/j.gpb.2022.11.011. Epub 2022 Dec 14.

引用本文的文献

4
Advancements in technology for characterizing the tumor immune microenvironment.肿瘤免疫微环境特征分析技术的进展
Int J Biol Sci. 2024 Mar 25;20(6):2151-2167. doi: 10.7150/ijbs.92525. eCollection 2024.
10
Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.深度学习在单细胞 RNA 测序数据分析中的应用:综述。
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):814-835. doi: 10.1016/j.gpb.2022.11.011. Epub 2022 Dec 14.

本文引用的文献

4
Supervised classification enables rapid annotation of cell atlases.监督分类可实现细胞图谱的快速标注。
Nat Methods. 2019 Oct;16(10):983-986. doi: 10.1038/s41592-019-0535-3. Epub 2019 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验