Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States.
Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United states.
J Phys Chem B. 2021 Mar 18;125(10):2566-2576. doi: 10.1021/acs.jpcb.0c11545. Epub 2021 Mar 8.
Colloidal semiconductor quantum dots (QDs) have long established their versatility and utility for the visualization of biological interactions. On the single-particle level, QDs have demonstrated superior photophysical properties compared to organic dye molecules or fluorescent proteins, but it remains an open question as to which of these fundamental characteristics are most significant with respect to the performance of QDs for imaging beyond the diffraction limit. Here, we demonstrate significant enhancement in achievable localization precision in QD-labeled neurons compared to neurons labeled with an organic fluorophore. Additionally, we identify key photophysical parameters of QDs responsible for this enhancement and compare these parameters to reported values for commonly used fluorophores for super-resolution imaging.
胶体半导体量子点 (QDs) 在可视化生物相互作用方面具有长期确立的多功能性和实用性。在单粒子水平上,与有机染料分子或荧光蛋白相比,QDs 表现出优越的光物理性质,但对于超越衍射极限的成像而言,这些基本特性中哪些对 QD 的性能最重要仍是一个悬而未决的问题。在这里,我们证明了与用有机荧光染料标记的神经元相比,在 QD 标记的神经元中可实现的定位精度有显著提高。此外,我们确定了导致这种增强的 QD 的关键光物理参数,并将这些参数与用于超分辨率成像的常用荧光染料的报告值进行了比较。