Suppr超能文献

基于深度学习的首发精神病、双相情感障碍和健康对照的自动诊断。

Deep learning based automatic diagnosis of first-episode psychosis, bipolar disorder and healthy controls.

机构信息

College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

Comput Med Imaging Graph. 2021 Apr;89:101882. doi: 10.1016/j.compmedimag.2021.101882. Epub 2021 Feb 25.

Abstract

Neuroimaging data driven machine learning based predictive modeling and pattern recognition has been attracted strongly attention in biomedical sciences. Machine learning based diagnosis techniques are widely applied in diagnosis of neurological diseases. However, machine learning techniques are difficult to effectively extract deep information in neuroimaging data, resulting in low classification accuracy of mental illnesses. To address this problem, we propose a deep learning based automatic diagnosis first-episode psychosis (FEP), bipolar disorder (BD) and healthy controls (HC) method. Specifically, we design a convolutional neural network (CNN) framework to automatically diagnosis based on structural magnetic functional imaging (sMRI). Our dataset consists of 89 FEP patients, 40 BD patients and 83 HC. A three-way classifier (FEP vs. BD vs. HC) and three binary classifiers (FEP vs. BD, FEP vs. HC, BD vs. HC) are trained based on their gray matter volume images. Experiment results show that the performance of CNN-based method outperforms the classic classifiers both in two and three categories classification task. Our research reveals that abnormal gray matter volume is one of the main characteristics for discriminating FEP, BD and HC.

摘要

基于神经影像学数据的机器学习预测模型和模式识别已在生物医学科学中受到强烈关注。基于机器学习的诊断技术已广泛应用于神经疾病的诊断。然而,机器学习技术难以有效地从神经影像学数据中提取深层信息,导致精神疾病的分类准确性较低。为了解决这个问题,我们提出了一种基于深度学习的首发精神病(FEP)、双相障碍(BD)和健康对照(HC)的自动诊断方法。具体来说,我们设计了一个卷积神经网络(CNN)框架,基于结构磁共振功能成像(sMRI)进行自动诊断。我们的数据集包括 89 名 FEP 患者、40 名 BD 患者和 83 名 HC。基于他们的灰质体积图像,我们训练了一个三分类器(FEP 与 BD 与 HC)和三个二分类器(FEP 与 BD、FEP 与 HC、BD 与 HC)。实验结果表明,基于 CNN 的方法在两类和三类分类任务中的性能均优于经典分类器。我们的研究表明,异常灰质体积是区分 FEP、BD 和 HC 的主要特征之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验