Fojt Jakub, Rossi Tuomas P, Antosiewicz Tomasz J, Kuisma Mikael, Erhart Paul
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland.
J Chem Phys. 2021 Mar 7;154(9):094109. doi: 10.1063/5.0037853.
Strong light-matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of different units are coupled only at the dipolar level. We demonstrate this approach by comparison with previous time-dependent density functional theory calculations for fully coupled systems of Al nanoparticles and benzene molecules. While the present study only considers few-particle systems, the approach can be readily extended to much larger systems and to include explicit optical-cavity modes.
强光与物质的相互作用不仅推动了量子和非线性光学领域新兴应用的发展,还促进了材料性质的改变。特别是,后一种可能性激发了先进理论技术的发展,这些技术能够精确捕捉量子光学和量子化学自由度。然而,这些方法在计算上要求很高,这限制了它们的应用范围。在这里,我们证明,使用子系统方法可以很好地预测纳米颗粒 - 分子组装体的光谱,包括强耦合效应,在该方法中,不同单元的响应函数仅在偶极水平上耦合。我们通过与先前针对铝纳米颗粒和苯分子的完全耦合系统的含时密度泛函理论计算进行比较来证明这种方法。虽然本研究仅考虑少粒子系统,但该方法可以很容易地扩展到更大的系统,并包括明确的光学腔模式。