文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定胆管癌的肿瘤抗原和免疫亚型,用于 mRNA 疫苗的开发。

Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development.

机构信息

Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

出版信息

Mol Cancer. 2021 Mar 8;20(1):50. doi: 10.1186/s12943-021-01342-6.


DOI:10.1186/s12943-021-01342-6
PMID:33685460
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7938044/
Abstract

BACKGROUND: The mRNA-based cancer vaccine has been considered a promising strategy and the next hotspot in cancer immunotherapy. However, its application on cholangiocarcinoma remains largely uncharacterized. This study aimed to identify potential antigens of cholangiocarcinoma for development of anti-cholangiocarcinoma mRNA vaccine, and determine immune subtypes of cholangiocarcinoma for selection of suitable patients from an extremely heterogeneous population. METHODS: Gene expression profiles and corresponding clinical information were collected from GEO and TCGA, respectively. cBioPortal was used to visualize and compare genetic alterations. GEPIA2 was used to calculate the prognostic index of the selected antigens. TIMER was used to visualize the correlation between the infiltration of antigen-presenting cells and the expression of the identified antigens. Consensus clustering analysis was performed to identify the immune subtypes. Graph learning-based dimensionality reduction analysis was conducted to visualize the immune landscape of cholangiocarcinoma. RESULTS: Three tumor antigens, such as CD247, FCGR1A, and TRRAP, correlated with superior prognoses and infiltration of antigen-presenting cells were identified in cholangiocarcinoma. Cholangiocarcinoma patients were stratified into two immune subtypes characterized by differential molecular, cellular and clinical features. Patients with the IS1 tumor had immune "hot" and immunosuppressive phenotype, whereas those with the IS2 tumor had immune "cold" phenotype. Interestingly, patients with the IS2 tumor had a superior survival than those with the IS1 tumor. Furthermore, distinct expression of immune checkpoints and immunogenic cell death modulators was observed between different immune subtype tumors. Finally, the immune landscape of cholangiocarcinoma revealed immune cell components in individual patient. CONCLUSIONS: CD247, FCGR1A, and TRRAP are potential antigens for mRNA vaccine development against cholangiocarcinoma, specifically for patients with IS2 tumors. Therefore, this study provides a theoretical basis for the anti-cholangiocarcinoma mRNA vaccine and defines suitable patients for vaccination.

摘要

背景:基于 mRNA 的癌症疫苗被认为是一种有前途的策略,也是癌症免疫治疗的下一个热点。然而,其在胆管癌中的应用仍很大程度上尚未被描述。本研究旨在确定胆管癌的潜在抗原,用于开发抗胆管癌 mRNA 疫苗,并确定胆管癌的免疫亚型,以便从极度异质的人群中选择合适的患者。

方法:从 GEO 和 TCGA 分别收集基因表达谱和相应的临床信息。使用 cBioPortal 可视化和比较遗传改变。使用 GEPIA2 计算选定抗原的预后指数。使用 TIMER 可视化抗原呈递细胞浸润与鉴定抗原表达之间的相关性。进行共识聚类分析以确定免疫亚型。进行基于图学习的降维分析以可视化胆管癌的免疫景观。

结果:在胆管癌中鉴定出三个与较好预后相关且抗原呈递细胞浸润的肿瘤抗原,如 CD247、FCGR1A 和 TRRAP。将胆管癌患者分为两个免疫亚型,其特征在于不同的分子、细胞和临床特征。具有 IS1 肿瘤的患者具有免疫“热”和免疫抑制表型,而具有 IS2 肿瘤的患者具有免疫“冷”表型。有趣的是,具有 IS2 肿瘤的患者的生存优于具有 IS1 肿瘤的患者。此外,在不同免疫亚型的肿瘤之间观察到免疫检查点和免疫原性细胞死亡调节剂的不同表达。最后,胆管癌的免疫景观揭示了个体患者的免疫细胞成分。

结论:CD247、FCGR1A 和 TRRAP 是针对胆管癌的 mRNA 疫苗开发的潜在抗原,特别是针对 IS2 肿瘤的患者。因此,本研究为抗胆管癌 mRNA 疫苗提供了理论基础,并为疫苗接种定义了合适的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/a3f0f9a5e0ae/12943_2021_1342_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/2a08be4c24a2/12943_2021_1342_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/b6641cc48b5d/12943_2021_1342_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/ec96acfd3843/12943_2021_1342_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/834e7456d941/12943_2021_1342_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/74d85f1e53f4/12943_2021_1342_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/9430bf6a77f8/12943_2021_1342_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/119133039d5e/12943_2021_1342_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/08292a4b482b/12943_2021_1342_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/95c9bbe2ab4e/12943_2021_1342_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/d5b11c690343/12943_2021_1342_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/a3f0f9a5e0ae/12943_2021_1342_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/2a08be4c24a2/12943_2021_1342_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/b6641cc48b5d/12943_2021_1342_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/ec96acfd3843/12943_2021_1342_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/834e7456d941/12943_2021_1342_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/74d85f1e53f4/12943_2021_1342_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/9430bf6a77f8/12943_2021_1342_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/119133039d5e/12943_2021_1342_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/08292a4b482b/12943_2021_1342_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/95c9bbe2ab4e/12943_2021_1342_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/d5b11c690343/12943_2021_1342_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c6/7938485/a3f0f9a5e0ae/12943_2021_1342_Fig11_HTML.jpg

相似文献

[1]
Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development.

Mol Cancer. 2021-3-8

[2]
Dissecting Tumor Antigens and Immune Subtypes of Glioma to Develop mRNA Vaccine.

Front Immunol. 2021

[3]
Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development.

Mol Cancer. 2021-3-1

[4]
Recognition of Tumor-Associated Antigens and Immune Subtypes in Glioma for mRNA Vaccine Development.

Front Immunol. 2021

[5]
Identification of Tumor Antigens and Immune Subtypes of Glioblastoma for mRNA Vaccine Development.

Front Immunol. 2022

[6]
Dissection of tumor antigens and immune landscape in clear cell renal cell carcinoma: Preconditions for development and precision medicine of mRNA vaccine.

Math Biosci Eng. 2023-1

[7]
Identification of Potential Antigens for Developing mRNA Vaccine for Immunologically Cold Mesothelioma.

Front Cell Dev Biol. 2022-7-1

[8]
Identification of three tumor antigens and immune subtypes for mRNA vaccine development in diffuse glioma.

Theranostics. 2021

[9]
Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma.

Mol Cancer. 2021-12-6

[10]
Comprehensive Analyses of Immune Subtypes of Stomach Adenocarcinoma for mRNA Vaccination.

Front Immunol. 2022

引用本文的文献

[1]
Omics-driven networks herald a new era of multidimensional therapy for cholangiocarcinoma.

Hepatol Commun. 2025-9-5

[2]
Recognition of molecular clusters and a novel prognostic signature based on natural killer cell-related genes in skin cutaneous melanoma.

World J Surg Oncol. 2025-9-3

[3]
Immunotherapy in biliary tract cancer: reshaping the tumour microenvironment and advancing precision combination strategies.

Front Immunol. 2025-8-8

[4]
Lymph nodes molecular subtypes unravel lymph nodes heterogeneity and clinical implications in colorectal cancer.

Nat Commun. 2025-8-22

[5]
Immunogenic cell death-related genes as prognostic biomarkers and therapeutic insights in uterine corpus endometrial carcinoma: an integrative bioinformatics analysis.

Front Oncol. 2025-7-24

[6]
Nanotechnology-based mRNA vaccines.

Nat Rev Methods Primers. 2023

[7]
Integrative Analysis of Novel Ferroptosis-Related Genes Signatures as Prognostic Biomarkers in Ovarian Cancer.

Cancer Rep (Hoboken). 2025-8

[8]
Novel telomere-targeting dual-pharmacophore dinucleotide prodrugs for anticancer therapy.

Nucleic Acids Res. 2025-6-20

[9]
Identification of esophageal cancer tumor antigens and immune subtypes for guiding vaccine development.

J Thorac Dis. 2025-5-30

[10]
RNA Through Time: From the Origin of Life to Therapeutic Frontiers in Transcriptomics and Epitranscriptional Medicine.

Int J Mol Sci. 2025-5-22

本文引用的文献

[1]
Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization.

Cell Host Microbe. 2021-3-10

[2]
Potential COVID-19 Therapeutic Agents and Vaccines: An Evidence-Based Review.

J Clin Pharmacol. 2021-4

[3]
The immunodominant and neutralization linear epitopes for SARS-CoV-2.

Cell Rep. 2021-1-26

[4]
Looking beyond COVID-19 vaccine phase 3 trials.

Nat Med. 2021-2

[5]
FCGR1A Serves as a Novel Biomarker and Correlates With Immune Infiltration in Four Cancer Types.

Front Mol Biosci. 2020-12-3

[6]
SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity.

Nat Commun. 2020-11-26

[7]
A Perspective on Cell Therapy and Cancer Vaccine in Biliary Tract Cancers (BTCs).

Cancers (Basel). 2020-11-17

[8]
Therapeutic vaccines for colorectal cancer: The progress and future prospect.

Int Immunopharmacol. 2020-11

[9]
Latest evidence on immunotherapy for cholangiocarcinoma.

Oncol Lett. 2020-12

[10]
Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors.

Cancer Discov. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索