Suppr超能文献

基于浆细胞骨髓瘤血浆细胞代谢相关基因表达的预后生存模型。

A prognostic survival model based on metabolism-related gene expression in plasma cell myeloma.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.

Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.

出版信息

Leukemia. 2021 Nov;35(11):3212-3222. doi: 10.1038/s41375-021-01206-4. Epub 2021 Mar 8.

Abstract

Accurate survival prediction of persons with plasma cell myeloma (PCM) is challenging. We interrogated clinical and laboratory co-variates and RNA matrices of 1040 subjects with PCM from public datasets in the Gene Expression Omnibus database in training (N = 1) and validation (N = 2) datasets. Genes regulating plasma cell metabolism correlated with survival were identified and seven used to build a metabolic risk score using Lasso Cox regression analyses. The score had robust predictive performance with 5-year survival area under the curve (AUCs): 0.71 (95% confidence interval, 0.65, 0.76), 0.88 (0.67, 1.00) and 0.64 (0.57, 0.70). Subjects in the high-risk training cohort (score > median) had worse 5-year survival compared with those in the low-risk cohort (62% [55, 68%] vs. 85% [80, 90%]; p < 0.001). This was also so for the validation cohorts. A nomogram combining metabolic risk score with Revised International Staging System (R-ISS) score increased survival prediction from an AUC = 0.63 [0.58, 0.69] to an AUC = 0.73 [0.66, 0.78]; p = 0.015. Modelling predictions were confirmed in in vitro tests with PCM cell lines. Our metabolic risk score increases survival prediction accuracy in PCM.

摘要

浆细胞骨髓瘤(PCM)患者的准确生存预测具有挑战性。我们在训练(N=1)和验证(N=2)数据集的基因表达综合数据库中,对来自公共数据集的 1040 名 PCM 患者的临床和实验室协变量以及 RNA 矩阵进行了分析。鉴定出与生存相关的调节浆细胞代谢的基因,并使用 Lasso Cox 回归分析构建了七个代谢风险评分。该评分具有良好的预测性能,5 年生存率的曲线下面积(AUC)分别为:0.71(95%置信区间,0.65,0.76)、0.88(0.67,1.00)和 0.64(0.57,0.70)。在高危训练队列(评分>中位数)中,患者的 5 年生存率较低危队列差(62%[55,68%] vs. 85%[80,90%];p<0.001)。验证队列也是如此。将代谢风险评分与修订后的国际分期系统(R-ISS)评分相结合的列线图,将生存预测的 AUC 从 0.63[0.58,0.69]提高到 0.73[0.66,0.78];p=0.015。在体外测试中使用 PCM 细胞系对模型预测进行了验证。我们的代谢风险评分提高了 PCM 患者的生存预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验