Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Genet. 2021 Apr;53(4):445-454. doi: 10.1038/s41588-021-00787-1. Epub 2021 Mar 8.
Psychiatric disorders are highly genetically correlated, but little research has been conducted on the genetic differences between disorders. We developed a new method (case-case genome-wide association study; CC-GWAS) to test for differences in allele frequency between cases of two disorders using summary statistics from the respective case-control GWAS, transcending current methods that require individual-level data. Simulations and analytical computations confirm that CC-GWAS is well powered with effective control of type I error. We applied CC-GWAS to publicly available summary statistics for schizophrenia, bipolar disorder, major depressive disorder and five other psychiatric disorders. CC-GWAS identified 196 independent case-case loci, including 72 CC-GWAS-specific loci that were not significant at the genome-wide level in the input case-control summary statistics; two of the CC-GWAS-specific loci implicate the genes KLF6 and KLF16 (from the Krüppel-like family of transcription factors), which have been linked to neurite outgrowth and axon regeneration. CC-GWAS loci replicated convincingly in applications to datasets with independent replication data.
精神障碍具有高度的遗传相关性,但对不同疾病之间的遗传差异的研究较少。我们开发了一种新的方法(病例-病例全基因组关联研究;CC-GWAS),使用各自病例对照 GWAS 的汇总统计数据来测试两种疾病之间的等位基因频率差异,超越了当前需要个体水平数据的方法。模拟和分析计算证实,CC-GWAS 具有良好的功效,并且可以有效地控制 I 型错误。我们将 CC-GWAS 应用于公开的精神分裂症、双相情感障碍、重度抑郁症和其他五种精神障碍的汇总统计数据。CC-GWAS 确定了 196 个独立的病例-病例位点,包括 72 个在输入病例对照汇总统计数据中未达到全基因组水平显著性的 CC-GWAS 特异性位点;两个 CC-GWAS 特异性位点涉及转录因子家族的 Krüppel 样因子基因 KLF6 和 KLF16,它们与神经突生长和轴突再生有关。CC-GWAS 位点在应用于具有独立复制数据的数据集时得到了令人信服的复制。