Suppr超能文献

绿色化学与冠状病毒

Green chemistry and coronavirus.

作者信息

Ahmadi Sepideh, Rabiee Navid, Fatahi Yousef, Hooshmand Seyyed Emad, Bagherzadeh Mojtaba, Rabiee Mohammad, Jajarmi Vahid, Dinarvand Rassoul, Habibzadeh Sajjad, Saeb Mohammad Reza, Varma Rajender S, Shokouhimehr Mohammadreza, Hamblin Michael R

机构信息

Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Chemistry, Sharif University of Technology, Tehran, Iran.

出版信息

Sustain Chem Pharm. 2021 Jun;21:100415. doi: 10.1016/j.scp.2021.100415. Epub 2021 Mar 3.

Abstract

The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.

摘要

自2019年12月以来,新型冠状病毒大流行已在全球迅速蔓延。各种技术已应用于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)或2019冠状病毒病(COVID-19)感染的识别,包括计算机断层扫描成像、全基因组测序以及诸如逆转录聚合酶链反应(RT-PCR)等分子方法。这篇综述文章讨论了目前用于SARS-CoV-2识别的诊断方法,包括即将出现的光学生物传感器和即时检测诊断方法。这些创新技术可能为SARS-CoV-2提供更准确、灵敏和快速的诊断,以应对当前的新型冠状病毒疫情,并可能有助于预防未来的任何疫情。此外,在光学生物传感器设备中使用绿色合成纳米材料可能会带来可持续且环保的方法来应对这一危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa0/7927595/4150d469dff4/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验