无定形结构域与结构蛋白之间的协同作用放大了细胞膜曲率的感应。

Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Nat Commun. 2018 Oct 8;9(1):4152. doi: 10.1038/s41467-018-06532-3.

Abstract

The ability of proteins to sense membrane curvature is essential to cellular function. All known sensing mechanisms rely on protein domains with specific structural features such as wedge-like amphipathic helices and crescent-shaped BAR domains. Yet many proteins that contain these domains also contain large intrinsically disordered regions. Here we report that disordered domains are themselves potent sensors of membrane curvature. Comparison of Monte Carlo simulations with in vitro and live-cell measurements demonstrates that the polymer-like behavior of disordered domains found in endocytic proteins drives them to partition preferentially to convex membrane surfaces, which place fewer geometric constraints on their conformational entropy. Further, proteins containing both structured curvature sensors and disordered regions are more than twice as curvature sensitive as their respective structured domains alone. These findings demonstrate an entropic mechanism of curvature sensing that is independent of protein structure and illustrate how structured and disordered domains can synergistically enhance curvature sensitivity.

摘要

蛋白质感知膜曲率的能力对细胞功能至关重要。所有已知的感应机制都依赖于具有特定结构特征的蛋白质结构域,如楔形两亲性螺旋和新月形 BAR 结构域。然而,许多含有这些结构域的蛋白质也含有大的固有无序区域。在这里,我们报告无序结构域本身就是膜曲率的有效传感器。蒙特卡罗模拟与体外和活细胞测量的比较表明,内吞蛋白中发现的无序结构域的聚合物样行为促使它们优先分配到凸面细胞膜表面,这对它们的构象熵的几何约束较少。此外,含有结构和无序区的蛋白质比其各自的结构域单独具有两倍以上的曲率敏感性。这些发现证明了一种与蛋白质结构无关的曲率感应的熵机制,并说明了结构域和无序域如何协同增强曲率敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c04/6175956/d45658c96e47/41467_2018_6532_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索