Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3590.
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2022806118.
The application of solid-state (SS) nanopore devices to single-molecule nucleic acid sequencing has been challenging. Thus, the early successes in applying SS nanopore devices to the more difficult class of biopolymer, glycosaminoglycans (GAGs), have been surprising, motivating us to examine the potential use of an SS nanopore to analyze synthetic heparan sulfate GAG chains of controlled composition and sequence prepared through a promising, recently developed chemoenzymatic route. A minimal representation of the nanopore data, using only signal magnitude and duration, revealed, by eye and image recognition algorithms, clear differences between the signals generated by four synthetic GAGs. By subsequent machine learning, it was possible to determine disaccharide and even monosaccharide composition of these four synthetic GAGs using as few as 500 events, corresponding to a zeptomole of sample. These data suggest that ultrasensitive GAG analysis may be possible using SS nanopore detection and well-characterized molecular training sets.
固态(SS)纳米孔设备在单分子核酸测序中的应用一直具有挑战性。因此,早期在将 SS 纳米孔设备应用于更困难的生物聚合物类,即糖胺聚糖(GAGs)方面取得的成功令人惊讶,这促使我们研究 SS 纳米孔在分析通过有前途的最近开发的化学酶法途径制备的具有受控组成和序列的合成肝素硫酸 GAG 链中的潜在用途。仅使用信号幅度和持续时间的纳米孔数据的最小表示,通过肉眼和图像识别算法,清楚地区分了由四种合成 GAG 产生的信号。通过随后的机器学习,可以使用多达 500 个事件(相当于样品的飞摩尔)确定这四种合成 GAG 的二糖甚至单糖组成,对应于样品的飞摩尔。这些数据表明,使用 SS 纳米孔检测和经过充分表征的分子训练集可能实现超灵敏的 GAG 分析。