Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia.
Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
Semin Thorac Cardiovasc Surg. 2022 Spring;34(1):172-179. doi: 10.1053/j.semtcvs.2021.02.021. Epub 2021 Mar 6.
Intensive care unit (ICU) costs comprise a significant proportion of the total inpatient charges for cardiac surgery. No reliable method for predicting intensive care unit length of stay following cardiac surgery exists, making appropriate staffing and resource allocation challenging. We sought to develop a predictive model to anticipate prolonged ICU length of stay (LOS). All patients undergoing coronary artery bypass grafting (CABG) and/or valve surgery with a Society of Thoracic Surgeons (STS) predicted risk score were evaluated from an institutional STS database. Models were developed using 2014-2017 data; validation used 2018-2019 data. Prolonged ICU LOS was defined as requiring ICU care for at least three days postoperatively. Predictive models were created using lasso regression and relative utility compared. A total of 3283 patients were included with 1669 (50.8%) undergoing isolated CABG. Overall, 32% of patients had prolonged ICU LOS. Patients with comorbid conditions including severe COPD (53% vs 29%, P < 0.001), recent pneumonia (46% vs 31%, P < 0.001), dialysis-dependent renal failure (57% vs 31%, P < 0.001) or reoperative status (41% vs 31%, P < 0.001) were more likely to experience prolonged ICU stays. A prediction model utilizing preoperative and intraoperative variables correctly predicted prolonged ICU stay 76% of the time. A preoperative variable-only model exhibited 74% prediction accuracy. Excellent prediction of prolonged ICU stay can be achieved using STS data. Moreover, there is limited loss of predictive ability when restricting models to preoperative variables. This novel model can be applied to aid patient counseling, resource allocation, and staff utilization.
重症监护病房(ICU)的费用占心脏手术总住院费用的很大一部分。目前还没有可靠的方法可以预测心脏手术后的 ICU 住院时间,这使得人员配备和资源分配具有挑战性。我们试图开发一种预测模型来预测 ICU 住院时间延长(LOS)。从机构 STS 数据库中评估了所有接受冠状动脉旁路移植术(CABG)和/或瓣膜手术且具有胸外科医师学会(STS)预测风险评分的患者。使用 2014-2017 年的数据开发模型;使用 2018-2019 年的数据进行验证。将 ICU 住院时间延长定义为术后至少需要 ICU 护理三天。使用套索回归和相对效用比较来创建预测模型。共纳入 3283 例患者,其中 1669 例(50.8%)接受单纯 CABG 手术。总体而言,32%的患者 ICU 住院时间延长。患有合并症的患者,包括严重 COPD(53%比 29%,P < 0.001)、近期肺炎(46%比 31%,P < 0.001)、依赖透析的肾功能衰竭(57%比 31%,P < 0.001)或再次手术状态(41%比 31%,P < 0.001)的患者更有可能经历 ICU 住院时间延长。利用术前和术中变量的预测模型 76%的时间正确预测了 ICU 住院时间延长。仅术前变量模型显示出 74%的预测准确性。使用 STS 数据可以很好地预测 ICU 住院时间延长。此外,当将模型限制为术前变量时,预测能力的损失有限。这种新模型可用于辅助患者咨询、资源分配和人员利用。