Suppr超能文献

餐馆和酒吧的公众关注度对美国每日 COVID-19 病例的因果推断:谷歌趋势分析。

The Causality Inference of Public Interest in Restaurants and Bars on Daily COVID-19 Cases in the United States: Google Trends Analysis.

机构信息

Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, United States.

Department of Computer Science, University of California Irvine, Irvine, CA, United States.

出版信息

JMIR Public Health Surveill. 2021 Apr 6;7(4):e22880. doi: 10.2196/22880.

Abstract

BACKGROUND

The COVID-19 pandemic has affected virtually every region in the world. At the time of this study, the number of daily new cases in the United States was greater than that in any other country, and the trend was increasing in most states. Google Trends provides data regarding public interest in various topics during different periods. Analyzing these trends using data mining methods may provide useful insights and observations regarding the COVID-19 outbreak.

OBJECTIVE

The objective of this study is to consider the predictive ability of different search terms not directly related to COVID-19 with regard to the increase of daily cases in the United States. In particular, we are concerned with searches related to dine-in restaurants and bars. Data were obtained from the Google Trends application programming interface and the COVID-19 Tracking Project.

METHODS

To test the causation of one time series on another, we used the Granger causality test. We considered the causation of two different search query trends related to dine-in restaurants and bars on daily positive cases in the US states and territories with the 10 highest and 10 lowest numbers of daily new cases of COVID-19. In addition, we used Pearson correlations to measure the linear relationships between different trends.

RESULTS

Our results showed that for states and territories with higher numbers of daily cases, the historical trends in search queries related to bars and restaurants, which mainly occurred after reopening, significantly affected the number of daily new cases on average. California, for example, showed the most searches for restaurants on June 7, 2020; this affected the number of new cases within two weeks after the peak, with a P value of .004 for the Granger causality test.

CONCLUSIONS

Although a limited number of search queries were considered, Google search trends for restaurants and bars showed a significant effect on daily new cases in US states and territories with higher numbers of daily new cases. We showed that these influential search trends can be used to provide additional information for prediction tasks regarding new cases in each region. These predictions can help health care leaders manage and control the impact of the COVID-19 outbreak on society and prepare for its outcomes.

摘要

背景

COVID-19 大流行几乎影响到了世界上的每个地区。在本研究进行之时,美国的日新增病例数超过了其他任何国家,且大多数州的病例数呈上升趋势。Google Trends 提供了不同时期各种主题公众兴趣的数据。使用数据挖掘方法分析这些趋势,可能会为 COVID-19 爆发提供有用的见解和观察。

目的

本研究旨在考虑与 COVID-19 不直接相关的不同搜索词的预测能力,以预测美国的日新增病例数。具体来说,我们关注的是与堂食餐厅和酒吧相关的搜索。数据来自 Google Trends 应用程序编程接口和 COVID-19 追踪项目。

方法

为了测试一个时间序列对另一个时间序列的因果关系,我们使用了格兰杰因果检验。我们考虑了与美国 10 个日新增病例数最高和 10 个最低的州和领地的堂食餐厅和酒吧相关的两种不同搜索查询趋势对每日阳性病例数的因果关系。此外,我们还使用皮尔逊相关系数来衡量不同趋势之间的线性关系。

结果

我们的结果表明,对于日新增病例数较高的州和领地,主要在重新开放后发生的与酒吧和餐厅相关的搜索查询的历史趋势,平均而言显著影响了日新增病例数。例如,加利福尼亚州在 2020 年 6 月 7 日对餐厅的搜索量最大;这对两周后的新病例峰值产生了影响,格兰杰因果检验的 P 值为.004。

结论

尽管考虑的搜索查询数量有限,但 Google 对餐厅和酒吧的搜索趋势对日新增病例数较高的美国州和领地的日新增病例数有显著影响。我们表明,这些有影响力的搜索趋势可用于为每个地区的新病例预测任务提供额外信息。这些预测可以帮助医疗保健领导人管理和控制 COVID-19 对社会的影响,并为其结果做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9bf/8025919/d0338b8db7be/publichealth_v7i4e22880_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验