Suppr超能文献

通过增材制造定制一氧化氮释放以创建抗菌表面。

Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces.

作者信息

Chug Manjyot Kaur, Bachtiar Emilio, Narwold Nicholas, Gall Ken, Brisbois Elizabeth J

机构信息

School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.

Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

出版信息

Biomater Sci. 2021 Apr 21;9(8):3100-3111. doi: 10.1039/d1bm00068c. Epub 2021 Mar 10.

Abstract

The current use of implantable and indwelling medical is limited due to potential microbial colonization leading to severe ailments. The aim of this work is to develop bioactive polymers that can be customized based on patient needs and help prevent bacterial infection. Potential benefits of additive manufacturing technology are integrated with the antimicrobial properties of nitric oxide (NO) to develop NO-releasing biocompatible polymer interfaces for addressing bacterial infections. Using filament-based additive manufacturing and polycarbonateurethane-silicone (PCU-Sil) a range of films possessing unique porosities (Disk-60, Disk-40, solid, capped) were fabricated. The films were impregnated with S-nitroso-N-acetyl-penicillamine (SNAP) using a solvent-swelling process. The Disk-60 porous films had the greatest amount of SNAP (19.59 wt%) as measured by UV-vis spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed an even distribution of SNAP throughout the polymer. The films exhibited structure-based tunable NO-release at physiological levels ranging from 7-14 days for solid and porous films, as measured by chemiluminescence. The antibacterial efficacy of the films was studied against Staphylococcus aureus using 24 h in vitro bacterial adhesion assay. The results demonstrated a >99% reduction of viable bacteria on the surface of all the NO-releasing films compared to unmodified PCU-Sil controls. The combination of 3D-printing technology with NO-releasing properties represents a promising technique to develop customized medical devices (such as 3D-scaffolds, catheters, etc.) with distinct NO-release levels that can provide antimicrobial properties and enhanced biocompatibility.

摘要

由于潜在的微生物定植会导致严重疾病,目前可植入和留置式医疗器械的使用受到限制。这项工作的目的是开发一种生物活性聚合物,它可以根据患者需求进行定制,并有助于预防细菌感染。增材制造技术的潜在优势与一氧化氮(NO)的抗菌特性相结合,以开发用于解决细菌感染的释放NO的生物相容性聚合物界面。使用基于长丝的增材制造技术和聚碳酸酯聚氨酯 - 硅酮(PCU - Sil)制备了一系列具有独特孔隙率的薄膜(Disk - 60、Disk - 40、实心、封端)。通过溶剂溶胀工艺将S - 亚硝基 - N - 乙酰青霉胺(SNAP)浸渍到薄膜中。通过紫外 - 可见光谱法测量,Disk - 60多孔薄膜的SNAP含量最高(19.59 wt%)。扫描电子显微镜和能量色散X射线光谱证实了SNAP在整个聚合物中分布均匀。通过化学发光法测量,这些薄膜在生理水平上表现出基于结构的可调NO释放,实心和多孔薄膜的释放时间为7 - 14天。使用24小时体外细菌粘附试验研究了薄膜对金黄色葡萄球菌的抗菌效果。结果表明,与未改性的PCU - Sil对照相比,所有释放NO的薄膜表面的活菌减少了>99%。3D打印技术与NO释放特性的结合代表了一种有前途的技术,可用于开发具有不同NO释放水平的定制医疗设备(如3D支架、导管等),这些设备可以提供抗菌性能并增强生物相容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验