Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA.
Alzheimers Res Ther. 2021 Mar 10;13(1):59. doi: 10.1186/s13195-021-00796-6.
Impaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD.
To address inconsistencies and determine if the shared pathologies in AD and elderly DS subjects with dementia (AD in DS; AD-DS) extend to the changes in KIF5 and KLC1, we measured the levels of all the three KIF5 family members and KLC1 in the AD and AD-DS frontal cortex and AD temporal cortex and cerebellum in samples taken with a short postmortem interval. To support future studies to explore the cell biological basis for any changes detected, we also examined the levels of these proteins in the brains of young and aged adult mice in the Dp (16)1Yey/+ (Dp16) mouse model of DS and J20 mouse model of AD.
There were no changes in comparison with controls in KIF5 family members in either the AD or AD-DS samples when normalized to either β-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Interestingly, however, samples from control brains as well as from AD and AD-DS demonstrated strong positive correlations between the levels of KIF5 family members, suggesting positive co-regulated expression. Importantly, while earlier reports pointed to a negative correlation between the levels of the amyloid precursor protein (APP) and KIF5A levels, we found the opposite to be true in AD-DS; this was especially striking given triplication of the APP gene, with increased APP protein levels. AD and control samples showed positive correlations between fl-hAPP and KIF5 members, but they were less consistent. In contrast to the findings for KIF5, the levels of KLC1 were downregulated in the frontal cortex of both AD and AD-DS brains; interestingly, this change was not seen in the AD temporal cortex or cerebellum. As postmortem interval has a negative effect on the levels of KLC1, but not KIF5 members, we analyzed a subset of samples with a very short postmortem interval (PMI) (≤ 6 h), a PMI that was not significantly correlated with the levels of KLC1 in either AD or AD-DS samples; we confirmed the presence of a statistically significant reduction of KLC1 in AD and AD-DS brains as compared with control brains. Studies comparing Dp16 to its euploid control recapitulated human studies in demonstrating no change in KIF5 levels and a positive correlation between the levels of KIF5 family members. J20 mice also showed normal KIF5 levels. However, unlike the AD and AD-DS frontal cortex, KLC1 levels were not reduced in the brains of Dp16 or J20 mice.
These data point to significant reductions in KLC1 in AD and AD-DS. In so doing, they raise the possibility of compromised KLC1-mediated axonal transport in these conditions, a posit that can now be pursued in model systems in which KLC1 expression is reduced.
轴突运输受损可能导致神经退行性疾病的发病机制,包括阿尔茨海默病(AD)和唐氏综合征(DS)。轴突运输是一个复杂的过程,其中特定的运动蛋白将货物运送到神经元细胞体及其过程,并将其运出。不一致的报告指出 AD 中经典的顺行运动蛋白驱动蛋白家族成员 5(KIF5)和主要神经元 KIF 调节剂驱动蛋白轻链 1(KLC1)的水平发生变化,这表明 AD 中的顺行运输受损。
为了解决不一致的问题,并确定 AD 和伴有痴呆的老年 DS 患者(AD 中的 DS;AD-DS)的共同病理学是否扩展到 KIF5 和 KLC1 的变化,我们测量了 AD 和 AD-DS 额叶皮层和 AD 颞叶皮层和小脑中所有三种 KIF5 家族成员和 KLC1 的水平,并在死后间隔时间较短的情况下采集样本。为了支持未来的研究,以探索检测到的任何变化的细胞生物学基础,我们还检查了年轻和老年成年小鼠的大脑中的这些蛋白质水平,这些小鼠是 DS 的 Dp(16)1Yey/+(Dp16)小鼠模型和 AD 的 J20 小鼠模型。
与对照组相比,AD 或 AD-DS 样本中的 KIF5 家族成员在与β-肌动蛋白或甘油醛-3-磷酸脱氢酶(GAPDH)归一化时没有变化。然而,有趣的是,来自对照大脑的样本以及 AD 和 AD-DS 的样本显示出 KIF5 家族成员之间存在强烈的正相关,表明存在正协同调控表达。重要的是,尽管早期的报告指出淀粉样前体蛋白(APP)的水平与 KIF5A 水平之间存在负相关,但我们在 AD-DS 中发现了相反的情况;考虑到 APP 基因的三倍体,APP 蛋白水平增加,这一点尤其引人注目。AD 和对照样本显示出 fl-hAPP 和 KIF5 成员之间的正相关,但它们的一致性较低。与 KIF5 的发现相反,KLC1 的水平在 AD 和 AD-DS 大脑的额叶中下调;有趣的是,这种变化在 AD 的颞叶皮层或小脑中没有看到。由于死后间隔时间对 KLC1 的水平有负面影响,但对 KIF5 成员没有影响,我们分析了一组死后间隔时间非常短(≤6 小时)的样本;死后间隔时间与 AD 或 AD-DS 样本中的 KLC1 水平均无显著相关性;我们证实与对照大脑相比,AD 和 AD-DS 大脑中 KLC1 的存在统计学上显著减少。与 Dp16 与其整倍体对照进行的研究表明,KIF5 水平没有变化,并且 KIF5 家族成员的水平之间存在正相关。J20 小鼠也表现出正常的 KIF5 水平。然而,与 AD 和 AD-DS 额叶不同,Dp16 或 J20 小鼠的大脑中 KLC1 水平没有降低。
这些数据表明 AD 和 AD-DS 中 KLC1 显著减少。这样做,它们提出了在这些情况下 KLC1 介导的轴突运输受损的可能性,这一假设现在可以在 KLC1 表达降低的模型系统中进行研究。