Suppr超能文献

通过随机森林自动分类算法支持的MRI容积测量在海马硬化癫痫患者中的诊断性能

Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm.

作者信息

Princich Juan Pablo, Donnelly-Kehoe Patricio Andres, Deleglise Alvaro, Vallejo-Azar Mariana Nahir, Pascariello Guido Orlando, Seoane Pablo, Veron Do Santos Jose Gabriel, Collavini Santiago, Nasimbera Alejandro Hugo, Kochen Silvia

机构信息

ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.

Hospital de Pediatría J.P Garrahan, Departamento de Neuroimágenes, Buenos Aires, Argentina.

出版信息

Front Neurol. 2021 Feb 22;12:613967. doi: 10.3389/fneur.2021.613967. eCollection 2021.

Abstract

Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.

摘要

有几种方法可为磁共振成像(MR)数据提供免费的容积测量服务,这些方法能够充分量化海马体及其亚区域的容积差异。这些方法经常用于辅助颞叶癫痫疑似海马硬化的临床诊断。使用MR容积测量法报告了组织病理学异常严重程度与海马体容积之间的强关联,其诊断率高于单独的视觉检查。由于固有的方法学差异以及所报告的海马体容积变异性,容积测量结果的解释具有挑战性。此外,在不同人群中认识到正常的形态测量差异可能需要考虑。为了解决这一问题,我们强调了包括图谱定义和总颅内体积计算在内的程序差异,这些差异可能会影响容积测量结果。我们旨在量化诊断性能,并从两种成熟技术:FreeSurfer v.06和volBrain-HIPS中提出海马体容积的参考值。使用来自61名健康对照和57名确诊为单侧海马硬化的癫痫患者的当地人群的临床T1 MRI计算容积测量值。我们通过一种先进的机器学习分类算法(随机森林)计算准确性和特征相关性来区分患者和对照,进一步验证了结果。该验证过程仅使用FreeSurfer数据集进行,考虑的形态测量值不仅来自海马体,还来自可能与组分类潜在相关的其他非海马体脑区。计算了左右海马体的平均参考值和95%置信区间以及海马体不对称度,以测试诊断准确性。两种方法均显示出优异的分类性能(曲线下面积:>0.914),绝对(厘米)和标准化容积存在明显差异。海马体不对称是所有估计中最准确的判别指标(曲线下面积:1~0.97)。在自动分类器的验证测试中也取得了类似结果(曲线下面积:>0.960),揭示出海马体结构是其他脑区中区分组别的最相关特征。我们从两种常用方法中计算了参考容积测量值,以准确识别颞叶癫痫和海马硬化患者。使用自动分类器进行的验证证实了海马体及其亚区域在诊断中的主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2278/7937810/c2ef51110a99/fneur-12-613967-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验