Suppr超能文献

使用递归神经网络识别动态记忆对植被状态的影响。

Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks.

作者信息

Kraft Basil, Jung Martin, Körner Marco, Requena Mesa Christian, Cortés José, Reichstein Markus

机构信息

Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.

Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany.

出版信息

Front Big Data. 2019 Oct 23;2:31. doi: 10.3389/fdata.2019.00031. eCollection 2019.

Abstract

Vegetation state is largely driven by climate and the complexity of involved processes leads to non-linear interactions over multiple time-scales. Recently, the role of temporally lagged dependencies, so-called memory effects, has been emphasized and studied using data-driven methods, relying on a vast amount of Earth observation and climate data. However, the employed models are often not able to represent the highly non-linear processes and do not represent time explicitly. Thus, data-driven study of vegetation dynamics demands new approaches that are able to model complex sequences. The success of Recurrent Neural Networks (RNNs) in other disciplines dealing with sequential data, such as Natural Language Processing, suggests adoption of this method for Earth system sciences. Here, we used a Long Short-Term Memory (LSTM) architecture to fit a global model for Normalized Difference Vegetation Index (NDVI), a proxy for vegetation state, by using climate time-series and static variables representing soil properties and land cover as predictor variables. Furthermore, a set of permutation experiments was performed with the objective to identify memory effects and to better understand the scales on which they act under different environmental conditions. This was done by comparing models that have limited access to temporal context, which was achieved through sequence permutation during model training. We performed a cross-validation with spatio-temporal blocking to deal with the auto-correlation present in the data and to increase the generalizability of the findings. With a full temporal model, global NDVI was predicted with of 0.943 and of 0.056. The temporal model explained 14% more variance than the non-memory model on global level. The strongest differences were found in arid and semiarid regions, where the improvement was up to 25%. Our results show that memory effects matter on global scale, with the strongest effects occurring in sub-tropical and transitional water-driven biomes.

摘要

植被状态在很大程度上受气候驱动,所涉及过程的复杂性导致了多个时间尺度上的非线性相互作用。最近,时间滞后依赖性(即所谓的记忆效应)的作用得到了强调,并使用数据驱动方法进行了研究,这些方法依赖于大量的地球观测和气候数据。然而,所采用的模型往往无法表示高度非线性过程,也没有明确表示时间。因此,植被动态的数据驱动研究需要能够对复杂序列进行建模的新方法。循环神经网络(RNN)在处理序列数据的其他学科(如自然语言处理)中的成功,表明该方法可应用于地球系统科学。在这里,我们使用长短期记忆(LSTM)架构,通过使用气候时间序列以及表示土壤特性和土地覆盖的静态变量作为预测变量,来拟合归一化植被指数(NDVI,植被状态的一个指标)的全球模型。此外,还进行了一组排列实验,目的是识别记忆效应,并更好地理解它们在不同环境条件下发挥作用的尺度。这是通过比较在模型训练期间通过序列排列限制对时间上下文访问的模型来实现的。我们进行了时空分块交叉验证,以处理数据中存在的自相关性,并提高研究结果的可推广性。使用完整的时间模型,预测全球NDVI的 为0.943, 为0.056。时间模型在全球层面上解释的方差比非记忆模型多14%。在干旱和半干旱地区发现了最显著的差异,改善幅度高达25%。我们的结果表明,记忆效应在全球尺度上很重要,在亚热带和过渡性水驱动生物群落中效应最强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e6f/7931900/8a31fbc3bc38/fdata-02-00031-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验