Suppr超能文献

新冠疫情期间奥地利社交媒体的情绪仪表盘

Dashboard of Sentiment in Austrian Social Media During COVID-19.

作者信息

Pellert Max, Lasser Jana, Metzler Hannah, Garcia David

机构信息

Complexity Science Hub Vienna, Vienna, Austria.

Section for Science of Complex Systems, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria.

出版信息

Front Big Data. 2020 Oct 26;3:32. doi: 10.3389/fdata.2020.00032. eCollection 2020.

Abstract

To track online emotional expressions on social media platforms close to real-time during the COVID-19 pandemic, we built a self-updating monitor of emotion dynamics using digital traces from three different data sources in Austria. This allows decision makers and the interested public to assess dynamics of sentiment online during the pandemic. We used web scraping and API access to retrieve data from the news platform derstandard.at, Twitter, and a chat platform for students. We documented the technical details of our workflow to provide materials for other researchers interested in building a similar tool for different contexts. Automated text analysis allowed us to highlight changes of language use during COVID-19 in comparison to a neutral baseline. We used special word clouds to visualize that overall difference. Longitudinally, our time series showed spikes in anxiety that can be linked to several events and media reporting. Additionally, we found a marked decrease in anger. The changes lasted for remarkably long periods of time (up to 12 weeks). We have also discussed these and more patterns and connect them to the emergence of collective emotions. The interactive dashboard showcasing our data is available online at http://www.mpellert.at/covid19_monitor_austria/. Our work is part of a web archive of resources on COVID-19 collected by the Austrian National Library.

摘要

为了在新冠疫情期间近乎实时地追踪社交媒体平台上的在线情绪表达,我们利用来自奥地利三个不同数据源的数字痕迹构建了一个情绪动态的自我更新监测器。这使决策者和感兴趣的公众能够评估疫情期间在线情绪的动态变化。我们使用网络爬虫和应用程序编程接口(API)访问从新闻平台derstandard.at、推特以及一个学生聊天平台获取数据。我们记录了工作流程的技术细节,为其他有兴趣针对不同情境构建类似工具的研究人员提供材料。自动化文本分析使我们能够突出新冠疫情期间与中性基线相比语言使用的变化。我们使用特殊的词云来直观展示这种总体差异。从纵向来看,我们的时间序列显示焦虑情绪出现峰值,这与多个事件和媒体报道有关。此外,我们发现愤怒情绪显著下降。这些变化持续了相当长的时间(长达12周)。我们还讨论了这些及更多模式,并将它们与集体情绪的出现联系起来。展示我们数据的交互式仪表盘可在http://www.mpellert.at/covid19_monitor_austria/在线获取。我们的工作是奥地利国家图书馆收集的新冠疫情相关资源网络存档的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b9/7931924/7c598469412c/fdata-03-00032-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验