Suppr超能文献

通过神经影像学基因组学剖析自闭症和精神分裂症。

Dissecting autism and schizophrenia through neuroimaging genomics.

机构信息

Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada.

Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada.

出版信息

Brain. 2021 Aug 17;144(7):1943-1957. doi: 10.1093/brain/awab096.

Abstract

Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.

摘要

神经影像学基因组学研究自闭症谱系障碍和精神分裂症主要采用“自上而下”的方法,从行为诊断开始,然后向下移动到中间脑表型和潜在的遗传因素。影像学和基因组学的进步已成功应用于越来越大的病例对照研究。与诊断优先方法相反,自下而上的策略从分子因素开始,使研究与生物学风险相关的机制成为可能,而无需考虑诊断或临床表现。后一种策略是从自上而下的研究中提出的问题出现的:为什么精神疾病患者的突变和脑表型过多?它们与疾病的核心症状有关还是与合并症有关?为什么突变和脑表型与几种精神诊断相关?它们是否影响贡献所有诊断的单一维度?在这篇综述中,我们旨在总结自闭症和精神分裂症的影像学基因组学发现以及与这些疾病相关的神经精神变体。自闭症和精神分裂症的自上而下研究确定了具有小效应大小和极端多基因结构的神经影像学改变模式。基因组变体和神经影像学模式在诊断类别中共享,表明分子和脑网络水平的多效性机制。尽管该领域正在获得牵引力;越来越多地描述可重复的结果,但仅采用自上而下的方法不太可能能够解开自闭症或精神分裂症涉及的机制。与自上而下的方法形成鲜明对比的是,自下而上的研究表明,高风险神经精神突变的效应大小对于神经影像学和行为特征同样大。特异性低一直困扰着研究,研究表明,广泛的基因组变体类影响相似范围的行为和认知维度,这可能与精神疾病的高度多基因结构一致。遗传和诊断优先方法之间观察到的令人惊讶的不一致效应大小强调了分解阻碍特发性疾病病例对照研究的异质性的必要性。我们建议在广泛的神经精神变体范围内进行系统研究,以确定特发性疾病潜在的潜在维度。大脑中时间、空间和细胞类型组织的基因表达数据在解析导致这些维度表型的机制方面也具有相当大的潜力。虽然现在有大量的神经影像学基因组数据集可用于非选择性人群,但迫切需要有一系列精神症状和高风险基因组变体的个体的数据。这些努力以及更标准化的方法将改善用于诊断和临床结果的机制信息预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b3/8370419/8b783137759b/awab096f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验