Suppr超能文献

2020 年 3 月至 8 月期间,有 COVID-19 病例的员工所在护理院的特征。

Characteristics of Nursing Homes by COVID-19 Cases Among Staff: March to August 2020.

机构信息

Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA.

Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY, USA.

出版信息

J Am Med Dir Assoc. 2021 May;22(5):960-965.e1. doi: 10.1016/j.jamda.2021.02.004. Epub 2021 Feb 11.

Abstract

OBJECTIVE

To measure the association between nursing home (NH) characteristics and Coronavirus Disease 2019 (COVID-19) prevalence among NH staff.

DESIGN

Retrospective cross-sectional study.

SETTING AND PARTICIPANTS

Centers for Disease Control and Prevention COVID-19 database for US NHs between March and August 2020, linked to NH facility characteristics (LTCFocus database) and local COVID-19 prevalence (USA Facts).

METHODS

We estimated the associations between NH characteristics, local infection rates, and other regional characteristics and COVID-19 cases among NH staff (nursing staff, clinical staff, aides, and other facility personnel) measured per 100 beds, controlling for the hospital referral regions in which NHs were located to account for local infection control practices and other unobserved characteristics.

RESULTS

Of the 11,858 NHs in our sample, 78.6% reported at least 1 staff case of COVID-19. After accounting for local COVID-19 prevalence, NHs in the highest quartile of confirmed resident cases (413.5 to 920.0 cases per 1000 residents) reported 18.9 more staff cases per 100 beds compared with NHs that had no resident cases. Large NHs (150 or more beds) reported 2.6 fewer staff cases per 100 beds compared with small NHs (<50 beds) and for-profit NHs reported 0.8 fewer staff cases per 100 beds compared with nonprofit NHs. Higher occupancy and more direct-care hours per day were associated with more staff cases (0.4 more cases per 100 beds for a 10% increase in occupancy, and 0.7 more cases per 100 beds for an increase in direct-care staffing of 1 hour per resident day, respectively). Estimates associated with resident demographics, payer mix, or regional socioeconomic characteristics were not statistically significant.

CONCLUSIONS AND IMPLICATIONS

These findings highlight the urgent need to support facilities with emergency resources such as back-up staff and protocols to reduce resident density within the facility, which may help stem outbreaks.

摘要

目的

测量养老院(NH)特征与 NH 工作人员中 2019 年冠状病毒病(COVID-19)流行之间的关联。

设计

回顾性横断面研究。

地点和参与者

美国疾病控制与预防中心(CDC)COVID-19 数据库中的 NH,时间为 2020 年 3 月至 8 月,与 NH 设施特征(LTCFocus 数据库)和当地 COVID-19 流行情况(USA Facts)相关联。

方法

我们估计了 NH 特征、当地感染率和其他区域特征与 COVID-19 病例之间的关联,这些病例以每 100 张床位为单位测量,控制 NH 所在的医院转诊区域,以说明当地感染控制措施和其他未观察到的特征。

结果

在我们的样本中,有 11858 家 NH,其中 78.6%报告了至少 1 名工作人员 COVID-19 病例。在考虑到当地 COVID-19 流行情况后,确认居民病例数最高的 NH (每 1000 名居民中有 413.5 至 920.0 例),每 100 张床位报告的工作人员病例数比没有居民病例的 NH 多 18.9 例。大型 NH(150 张或更多床位)每 100 张床位报告的工作人员病例数比小型 NH(<50 张床位)少 2.6 例,营利性 NH 每 100 张床位报告的工作人员病例数比非营利性 NH 少 0.8 例。更高的入住率和每天更多的直接护理时间与更多的工作人员病例数相关(入住率增加 10%,每 100 张床位增加 0.4 例;直接护理人员每居民日增加 1 小时,每 100 张床位增加 0.7 例)。与居民人口统计学、支付者组合或区域社会经济特征相关的估计值无统计学意义。

结论和意义

这些发现突出表明迫切需要向设施提供紧急资源,例如后备人员和协议,以减少设施内居民的密度,这可能有助于遏制疫情爆发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验